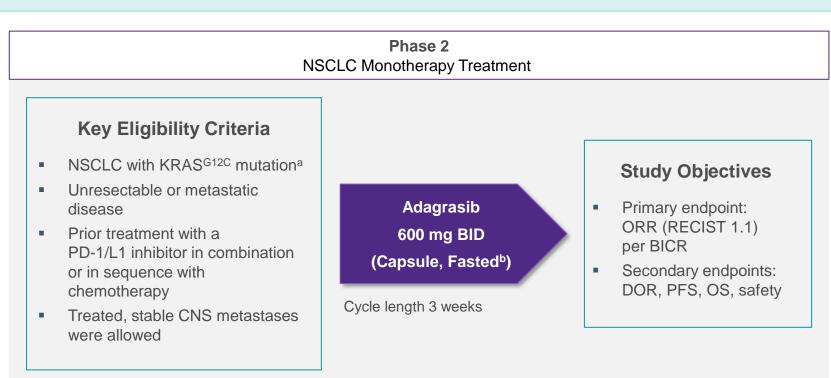
Jun Zhang¹, Konstantinos Leventakos², Ticiana A. Leal³, Nathan A. Pennell⁴, Minal Barve⁵, Scott Paulson⁶, Lyudmila Bazhenova⁷, Melissa L. Johnson⁸, Richard C. Chao⁹, Karen Velastegui⁹, Chunlin Qian⁹, Alexander I. Spira¹⁰

1. University of Kansas Medical Center, Kansas City, KS, USA; 2. Mayo Clinic, Rochester, MN, USA; 3. Winship Cancer Center, La Jolla, CA, USA; 4. Cleveland Clinic, Cleveland Clinic, Cleveland, OH, USA; 5. Mary Crowley Cancer Research, Dallas, TX, USA; 5. Mary Crowley Cancer Research, Dallas, TX, USA; 6. Texas Oncology-Baylor Charles A. Sammons Cancer Center, La Jolla, CA, USA; 8. Sarah Cannon Research Institute Tennessee Oncology, Nashville, TN, USA; 9. Mirati Therapeutics, Inc., San Diego, CA, USA; 10. Virginia Cancer Specialists, Fairfax, VA, USA

Background


- KRAS mutations occur in approximately 25% of non-small cell lung cancers (NSCLC)¹ with KRAS^{G12C} mutations occurring in approximately 14% of adenocarcinomas²
- Adagrasib is a KRAS^{G12C} inhibitor selected for favorable properties, including a long half-life (23 hours), dose-dependent pharmacokinetics, and central nervous system (CNS) penetration
- Adagrasib has previously demonstrated a manageable safety profile and clinical activity in 116 patients with previously treated KRAS^{G12C}-mutated NSCLC (objective response rate [ORR] 43%; median overall survival 12.6 months*), including patients with CNS metastases
- Treated, stable CNS metastases (intracranial ORR 33% per mRANO-BM; n=33)³
- Active, untreated CNS metastases (intracranial ORR 32% per mRANO-BM; n=19)⁴

Methods

Study Design

- KRYSTAL-1 is a multicohort Phase 1/2 study of adagrasib in patients with advanced solid tumors harboring a KRAS^{G12C} mutation (**Figure 1**)
- Efficacy and safety for Cohort A, a Phase 2 study with registrational intent, has previously been reported³
- Here we report additional practice-informing safety analyses from Cohort A evaluating adagrasib capsules 600 mg orally BID (fasted state[†]) in patients with previously treated NSCLC (N=116; **Table 1**)

Figure 1. KRYSTAL-1 Study Design

aKRAS^{G12C} mutation detected in tumor tissue and/or ctDNA; bTaken on an empty stomach following an overnight fast or ≥2 hours after previous meal and ≥1 hour before next meal; BICR, blinded independent central review; BID, twice daily; ctDNA, circulating tumor DNA; DOR, duration of response; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival

Additional Safety Analyses

- Time to onset of treatment-related adverse events (TRAEs)
- Time to resolution of TRAEs
- Management of TRAEs

Results

- Data cut-off October 15, 2021; median follow-up 12.9 months (95% CI, 11.8–13.5)*
- Median duration of treatment was 5.7 months (range, 0–19.6)

*Data cut-off for overall survival January 15, 2022; median follow up 15.6 months

[†]Taken on an empty stomach following an overnight fast or ≥2 hours after previous meal and ≥1 hour before next meal

Results

Table 1. Demographics and Baseline Characteristics

	Adagrasib Monotherapy (N=116) ^a
Median age, years (range)	64 (25–89)
Female sex, n (%)	65 (56%)
Race, n (%)	
White	97 (84%)
Black or African American	9 (8%)
Asian / Other	5 (4%) / 5 (4%)
ECOG PS, n (%)b	
0 / 1	18 (16%) / 97 (84%)
Histology, n (%)	
Adenocarcinoma	113 (97%)
Squamous	3 (3%)
Smoking history, n (%)	
Never smoker	5 (4%)
Current smoker / former smoker	11 (10%) / 100 (86%)
Prior lines of systemic therapy, n (%)	
1	50 (43%)
2	40 (35%)
3+	26 (22%)
Prior platinum-based therapy and/or checkpoint inhibitor n (%) ^c	therapy,
Received prior platinum-based therapy only	2 (2%)
Received both	114 (98%)
Baseline metastases, n (%)	
Bone	46 (40%)
CNS	24 (21%)
Adrenal	22 (19%)
Liver	19 (16%)

^a103 patients (89%) had metastatic disease and 13 (11%) had locally advanced disease; ^bMissing, n=1; ^c78 patients (67%) had received checkpoint inhibitor therapy as their immediate prior line of therapy; ECOG PS, Eastern Cooperative Oncology Group performance status

Treatment-Related Adverse Events

- TRAEs of any grade occurred in 97% of patients; 53% of TRAEs were grade 1–2, 45% of patients experienced a grade ≥3 TRAE (**Table 2**)
- There were 2 grade 5 TRAEs (cardiac failure [n=1] and pulmonary hemorrhage [n=1])
- Gastrointestinal (GI)-related TRAEs (diarrhea, nausea or vomiting) of any grade occurred in 85% of patients, and 30% of patients had increased ALT or AST
- The majority of these TRAEs were grade 1–2

Table 2. Treatment-Related Adverse Events

Event	Any Grade	Grade 1	Grade 2	Grade 3	Grade 4
Any TRAE, n (%)	113 (97%)	21 (18%)	40 (35%)	47 (41%)	3 (3%)
Most common TRAEs, n (%)a					
Diarrhea	73 (63%)	56 (48%)	16 (14%)	1 (1%)	0
Nausea	72 (62%)	44 (38%)	23 (20%)	5 (4%)	0
Vomiting	55 (47%)	42 (36%)	12 (10%)	1 (1%)	0
Fatigue	47 (41%)	19 (16%)	23 (20%)	5 (4%)	0
ALT increase	32 (28%)	16 (14%)	11 (10%)	4 (3%)	1 (1%)
Blood creatinine increase	30 (26%)	21 (18%)	8 (7%)	1 (1%)	0
AST increase	29 (25%)	15 (13%)	10 (9%)	4 (3%)	0
Decreased appetite	28 (24%)	10 (9%)	14 (12%)	4 (3%)	0
Anemia	21 (18%)	6 (5%)	9 (8%)	6 (5%)	0
Amylase increase	20 (17%)	11 (10%)	8 (7%)	1 (1%)	0
Electrocardiogram QT prolonged	19 (16%)	10 (9%)	4 (3%)	5 (4%)	0

^aOccurring in >15% of patients (any grade); ALT, alanine transaminase; AST, aspartate aminotransferase

Results

Dose Reductions, Interruptions and Discontinuations

- TRAEs led to dose reductions in 52% of patients and dose interruptions (dose held until AEs resolved to grade ≤1 or baseline) in 61% of patients (**Table 3**); the most common reasons were GI-related (nausea, vomiting, diarrhea), hepatic (ALT/AST), and fatigue
- Responses were seen regardless of dose interruptions or reductions
- Among patients with a tumor response (n=48), 21 maintained 600 mg BID all or most of the time, while 20 patients received 400 mg BID, 5 received 600 mg QD, and 1 patient received 200 mg BID for the majority of treatment; 1 patient had multiple dose reductions GI-related TRAEs led to a dose reduction in 23 patients (20%).
- TRAEs led to discontinuation in 8 patients (7%)

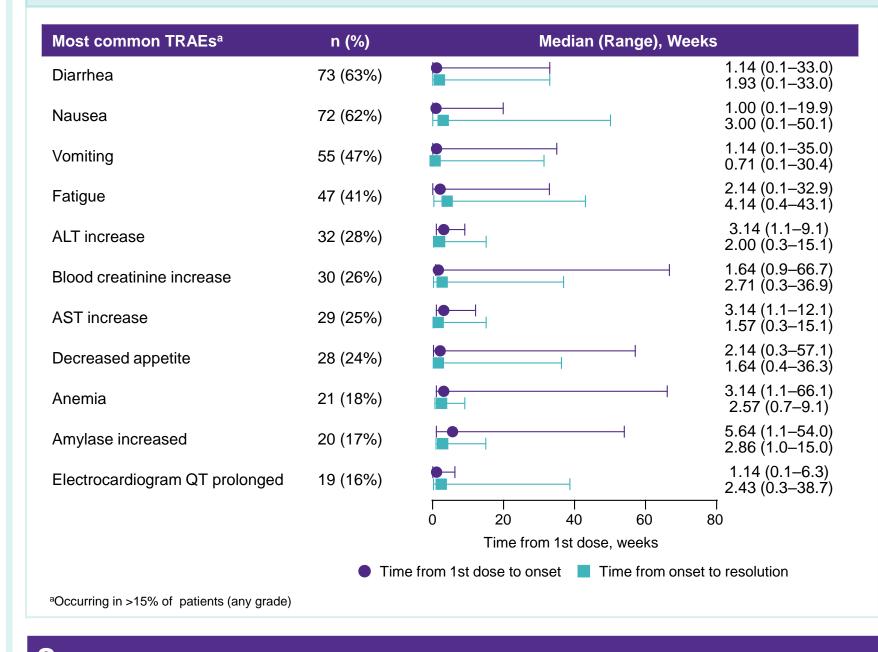
Table 3. TRAEs Leading to Dose Reduction or Interruption

vent	Adagrasib Monotherapy (N=116)
RAEs leading to dose reduction, n (%)	60 (52%)
GI-related TRAEs ^a	23 (20%)
ALT increase	12 (10%)
AST increase	7 (6%)
RAEs leading to dose interruption, n (%)	71 (61%)
GI-related TRAEs ^a	26 (22%)
ALT increase	11 (10%)
AST increase	10 (9%)
RAEs leading to discontinuation, n (%)	8 (7%)

reductions and abdominal pain (n=2), abdominal distension (n=1) or pancreatitis (n=1) that led to dose interruptions

Time to Onset and Resolution of TRAEs

• Overall, >92% of new onset TRAEs occurred within the first 3 cycles (Figure 2)


Figure 2. TRAE Onset by Cycle 60 50 Cycle Cycle length 3 weeks

Median time to onset was 3 days (range 1–231) for GI TRAEs and 22 days (range 8–63) for increased ALT and AST (Figure 3)

- Median time to resolution after initial occurrence of GI TRAEs was 14 days (range 1–351) and for increased ALT and AST was 12 days (range 2-106)
- GI TRAEs were manageable with dose reductions/interruptions and supportive medications (including provision as prophylaxis and as needed), with concomitant antidiarrheals used in 48% and antiemetics/antinauseants used in 87% of cases
- Overall, 14% and 11% of patients underwent dose reductions/interruptions for ALT and AST increases, respectively

Results

Figure 3. Time to Onset and Resolution of TRAEs

Summary

- Adagrasib, administered as capsules in a fasted state, demonstrated a manageable AE profile in patients with pretreated, advanced, KRAS^{G12C}-mutated NSCLC
- Most TRAEs were low grade, occurred early in treatment, and resolved guickly, resulting in a low (7%) discontinuation rate
- The most common TRAEs (GI-related, hepatic) were manageable with dose reductions/ interruptions and supportive medications
- Adagrasib is currently being evaluated in a tablet formulation, administered both fed and fasted, which is hypothesized to improve tolerability, particularly for GI-related TRAEs

References

- Pakkala S, et al. JCI Insight 2018;3(15):e120858.
- 2. Nassar AH, et al. *N Engl J Med* 2021;384(2):185–7.
- Jänne PA, et al. New Engl J Med 2022;387:120-31. Sabari JK, et al. ASCO Annual Meeting 2022;LBA9009.

Acknowledgments & Disclosures

- Dr Zhang has the following conflicts of interest to disclose: invited speaker for AstraZeneca, Regeneron, MJH Life Sciences, Sanofi, Novartis; advisory board for AstraZeneca, Hengrui; research grant from AstraZeneca, Biodesix, Nilogen, Genentech, Mirati Therapeutics; project lead for AstraZeneca, Biodesix, Nilogen, Genentech, Mirati Therapeutics; principal investigator for AstraZeneca, Biodesix, Nilogen, Genentech, Mirati Therapeutics; training for Novartis; sponsorship/funding from Abbvie, AstraZeneca, BeiGene, Genentech, Hengrui, Merck, Mirati Therapeutics, Nilogen, Novartis; advisory role for AstraZeneca, Eli Lilly, Nexus Health, Bayer, Biodesix, Hengrui, Novartis, Novocure, Bristol Myers Squibb, Sanofi, Takeda Oncology, Cardinal Health, Daiichi Sankyo, Mirati
- The authors would like to thank the patients for their participation, as well as site staff and clinical study teams for their work and contributions
- This study is supported by Mirati Therapeutics, Inc.
- Clinical trial registry number: NCT03785249
- All authors contributed to and approved this presentation; William F. Bleker contributed to the development and review of this presentation and abstract; writing and editorial assistance was provided by Rebecca Benatan, BSc, of

Ashfield MedComms, an Inizio company, funded by Mirati Therapeutics, Inc.

Presented at *ESMO 2022* September, 9–13, 2022 Author contact: jzhang3@kumc.edu