MRTX-500: Phase 2 Trial of Sitravatinib + Nivolumab in Patients With Nonsquamous Non–Small-Cell Lung Cancer Progressing on or After Prior Checkpoint Inhibitor Therapy

1University of Wisconsin Carbone Cancer Center, Madison, WI, USA; Emory University, Atlanta, GA, USA; 2Department of Cellular Therapeutics, Beverly Hills Cancer Center, Beverly Hills, CA, USA; 3Henry Ford Cancer Institute, Detroit, MI, USA; 4Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; 5University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA; 6Department of Medicine, University of California, San Francisco, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; 7Virginia Cancer Specialists, Fairfax, VA, USA; US Oncology Research, The Woodlands, TX, USA; 8Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA; 9OHC, Cincinnati, OH, USA; Texas Oncology; 10Texas Oncology Tyler, Tyler, TX, USA; US Oncology Research Network, The Woodlands, TX, USA; 11Northwest Cancer Specialists, Tigard, OR, USA; 12Rocky Mountain Cancer Centers, Denver, CO, USA; US Oncology Research, The Woodlands, TX, USA; 13Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA; 14The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 15Mirati Therapeutics, Inc., San Diego, CA, USA; 16The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.

Copies of this presentation can be obtained through Quick Response (QR). Copies are for personal use only and may not be reproduced without permission of the authors.
Disclosures

Ticiana A. Leal

- **Advisory Board:**
 - Blueprint, Merck, AstraZeneca, Jazz, Boehringer-Ingelheim, Bayer, Mirati

- **Consulting:**
 - Jazz, Boehringer-Ingelheim, Genentech, Lilly, Janssen
Background

- Checkpoint inhibitor therapy (CPI) has dramatically changed the treatment landscape for various cancer types, including NSCLC\(^1,2\)
- Many patients experience disease progression and develop CPI resistance through various mechanisms, including an immunosuppressive TME\(^3,4\)
- Sitravatinib is a receptor tyrosine kinase inhibitor (TKI) that targets TAM receptors (TYRO3, AXL, MERTK) and VEGFR2 which have been shown to modulate the immune TME\(^5-9\)
- Preliminary data from a Phase 1 window of opportunity trial in oral cavity cancer demonstrated sitravatinib resulted in a less immunosuppressive TME and was associated with a reduction in MDSCs and repolarization of macrophages toward the M1 type\(^6\)
- Combination of sitravatinib with nivolumab is a rational approach to augmenting the antitumor immune response and extending long term benefit to patients

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Sitravatinib Is a TKI That Targets TAM Receptors (TYRO3, AXL, MERTK) and Split-Family Receptors (eg, VEGFR2)

Rationale for Targeting TAM and Split RTKs to Enhance Immune Response to CPIs

- Targeting VEGFR2 reduces Tregs and MDSCs
- Targeting KIT also depletes MDSCs
- Releases brakes for expansion of CD8+ T cells via PD-1 inhibition
- Increase dendritic cell maturity and antigen presentation capacity
- Increase NK cell response
- Increase T-cell expansion and trafficking into tumors

Both TAM and Split RTKs cooperate to:

- Macrophages shift from (type) M2 to M1, resulting in production of immuno-stimulating cytokines
- Enhances innate and adaptive immune response

Sitravatinib shifts tumor macrophage polarization toward an immune-stimulating state in patients with HNSCC

MRTX-500: Sitravatinib + Nivolumab in Nonsquamous NSCLC After CPI Therapy

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
MRTX-500: Phase 2, Open-Label Study of Sitravatinib + Nivolumab in Patients With Nonsquamous NSCLC With Prior Clinical Benefit From Checkpoint Inhibitor Therapy

Key Eligibility Criteria

- Advanced/metastatic nonsquamous NSCLC
- No actionable driver mutations
- Anti–PD-1/L1 must be the most recent line of therapy
- Prior Clinical Benefit (PCB) to CPI: CR, PR, or SD ≥12 weeks from prior CPI therapy
- No uncontrolled brain metastases
- ECOG PS 0-2

Primary Endpoint:
- Objective Response Rate (ORR), as defined by RECIST 1.1

Secondary Endpoints:
- Safety and tolerability
- DOR
- CBR
- PFS
- OS
- 1-year survival rate

Here we report updated efficacy and safety with sitravatinib + nivolumab in the 2L or 3L setting in patients with nonsquamous NSCLC who have experienced clinical benefit on a prior CPI and subsequent disease progression.

Data as of 1 June 2021

- Additional cohorts included a CPI-experienced cohort that did not receive prior clinical benefit from CPI therapy (radiographic progression of disease ≤12 weeks after initiation of treatment with CPI) and a CPI-naive cohort in patients that were previously treated with platinum-based chemotherapy.
- Objective response rate based on investigator assessment. Dosing: sitravatinib free base formulation: nivolumab, 240 mg Q2W or 480 mg Q4W. Treatment discontinuation could be due to (but is not limited to) disease progression, global health deterioration, AEs, protocol violation, lost to follow-up, refusal of further treatment, study termination, or death.

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Patient Demographics and Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>2L/3L Sitra + Nivo (n=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>66.0</td>
</tr>
<tr>
<td>Range</td>
<td>37–87</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>29 (43)</td>
</tr>
<tr>
<td>Female</td>
<td>39 (57)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>58 (85)</td>
</tr>
<tr>
<td>Other</td>
<td>10 (15)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>18 (27)</td>
</tr>
<tr>
<td>1</td>
<td>45 (66)</td>
</tr>
<tr>
<td>2</td>
<td>5 (7)</td>
</tr>
<tr>
<td>Smoking status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Never smoker</td>
<td>12 (18)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>9 (13)</td>
</tr>
<tr>
<td>Prior smoker</td>
<td>47 (69)</td>
</tr>
<tr>
<td>Prior platinum-based chemotherapy, n (%)</td>
<td></td>
</tr>
<tr>
<td>Cisplatin</td>
<td>50 (73)</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>45 (66)</td>
</tr>
<tr>
<td>Prior PD-1/L1 checkpoint inhibitor, n (%)</td>
<td></td>
</tr>
<tr>
<td>Nivolumab</td>
<td>68 (100)</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>19 (28)</td>
</tr>
<tr>
<td>Durvalumab</td>
<td>45 (66)</td>
</tr>
<tr>
<td>Atezolizumab</td>
<td>4 (2)</td>
</tr>
<tr>
<td>Best response to checkpoint inhibitor, n (%)</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>2 (3)</td>
</tr>
<tr>
<td>PR</td>
<td>30 (44)</td>
</tr>
<tr>
<td>SD</td>
<td>36 (53)</td>
</tr>
</tbody>
</table>

Data as of 1 June 2021.

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Duration of Treatment With Sitravatinib + Nivolumab in Patients With Nonsquamous NSCLC With Prior Clinical Benefit From CPI Therapy

- ORR was 18% (12/68), including 2 CRs (3%) and 10 PRs (15%)\(^a\)
 - DCR was 78% (53/68)
- Median DOR was 12.8 months
- Median duration of treatment:
 - Sitravatinib: 4.8 months (range: 0, 40)
 - Nivolumab: 5.2 months (range: 0, 41)

\(^a\) 10 (14.7%) patients were not evaluable for ORR: 8 patients without post-baseline scan, 1 patient without measurable disease at baseline, and 1 patient for whom all post-baseline scans were NE. The study did not meet the primary endpoint of ORR.

Median follow-up in the PCB cohort was 33.6 months. Data as of 1 June 2021.

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Progression-Free Survival With Sitravatinib + Nivolumab in Patients With Nonsquamous NSCLC With Prior Clinical Benefit From CPI Therapy

Median follow-up in PCB cohort: 33.6 months.
Data as of 1 June 2021.

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Overall Survival With Sitravatinib + Nivolumab in Patients With Nonsquamous NSCLC With Prior Clinical Benefit From CPI Therapy

Overall Survival in Patients With NSCLC (n=68)

- **Sitravatinib + Nivolumab (n=68)**
 - Median OS (95% CI): 14.9 (9.3, 21.1)
 - Events/censored, n (%): 46 (68)/22 (32)

Patients at risk:
- Sitravatinib + nivolumab
 - 68 at baseline
 - 52 at 12 months
 - 34 at 18 months
 - 26 at 24 months
 - 16 at 30 months
 - 11 at 36 months
 - 4 at 42 months

Median follow-up in PCB cohort: 33.6 months.
Data as of 1 June 2021.

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Incidence of Treatment-Related Adverse Events

<table>
<thead>
<tr>
<th>TRAEs</th>
<th>2L/3L Sitra + Nivo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any Grade</td>
</tr>
<tr>
<td>Any TRAEs</td>
<td>93%</td>
</tr>
<tr>
<td>Most frequent TRAEs, %</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>62%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>52%</td>
</tr>
<tr>
<td>Nausea</td>
<td>44%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>40%</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>35%</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>31%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>31%</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>22%</td>
</tr>
<tr>
<td>Dysphonia</td>
<td>19%</td>
</tr>
<tr>
<td>ALT increase</td>
<td>18%</td>
</tr>
<tr>
<td>AST increase</td>
<td>16%</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>15%</td>
</tr>
<tr>
<td>PPE syndrome</td>
<td>15%</td>
</tr>
<tr>
<td>Dehydration</td>
<td>15%</td>
</tr>
</tbody>
</table>

• The most frequent immune-related TRAEs included hypothyroidism, diarrhea, ALT increase, AST increase, TSH increase maculopapular rash, and pancreatitis\(^a\)

• No grade 5 events occurred in the CPI-experienced cohort\(^b\)

\(^a\)Investigator-assessed AE causality as immune-related. \(^b\)1 grade 5 TRAE (cardiac arrest) occurred in the CPI-naive patient population.

Data as of 1 June 2021.

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Sitravatinib Discontinuation, Dose Reduction, and Dose Interruption Rates

<table>
<thead>
<tr>
<th></th>
<th>2L/3L Sitra + Nivo (n=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discontinuation due to TRAEs, %</td>
<td></td>
</tr>
<tr>
<td>Sitravatinib</td>
<td>22</td>
</tr>
<tr>
<td>Nivolumab</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Dose reduction of sitravatinib due to AEs<sup>a</sup>, %</td>
<td>60</td>
</tr>
<tr>
<td>80 mg</td>
<td>31</td>
</tr>
<tr>
<td>60 mg</td>
<td>22</td>
</tr>
<tr>
<td>40 mg</td>
<td>7</td>
</tr>
<tr>
<td>≥1 dose interruption of sitravatinib due to AEs<sup>b,c</sup>, %</td>
<td>81</td>
</tr>
</tbody>
</table>

^a Median time from first dose to first dose reduction: 1.4 months.
^b Dose interruption is defined as any gap in the dosing record that is ≥1 day.
^c Median time to first dose interruption: 1 month
Data as of 1 June 2021.

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Patient Case: Patient With >3-Year Survival and CR

Treatment History: 37-Year-Old Female Who Doesn’t Smoke Diagnosed With Metastatic NSCLC

- Mar 2015: Metastatic NSCLC diagnosis
- Mar-July 2015: Carboplatin + pemetrexed
- Sept 2015: Chest radiotherapy
- Enrollment Jan 2018: Sitravatinib + nivolumab (dose reduction 60 mg, May 2018)
- Nov 2018: Confirmed CR
- Mar 2021: Study completed; patient alive

December 2017
Baseline

April 2021
CR

TRAEs
- Grade 3 diarrhea
- Grade 2 bottom lip sore
- Grade 2 hypothyroidism and PPE syndrome

* PET/CT scan
 * Post-COVID vaccine with some axillary lymphadenopathy was observed

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Summary

• Sitravatinib is a spectrum-selective TKI targeting TAM (TYRO3, AXL, MERTK) receptors and VEGFR2 that can potentially overcome an immunosuppressive TME5

• Sitravatinib + nivolumab demonstrated antitumor activity, encouraging OS, and durable responses in patients with nonsquamous NSCLC with prior clinical benefit from a CPI
 – Median DOR was 12.8 months; ORR was 18% (12/68)
 – 1- and 2-year OS were 56% and 32%, respectively

• No unexpected safety signals with the combination were observed, and AEs were manageable

• These results support the ongoing Phase 3 SAPHIRE study (NCT03906071), evaluating sitravatinib + nivolumab in patients with nonsquamous NSCLC who received clinical benefit from and subsequently experienced progressive disease on a prior CPI

Copies of this presentation can be obtained through Quick Response (QR). Copies are for personal use only and may not be reproduced without permission of the authors.

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
SAPPHIRE: Phase 3, Randomized, Open-Label Trial of 2L/3L Sitravatinib + Nivolumab vs Docetaxel After Progression on or Following CPI in Advanced NSCLC

Key Eligibility Criteria (n=532)
- Advanced, nonsquamous NSCLC
- Prior PD-1/L1 therapy for ≥4 months (prior anti–CTLA-4 therapy allowed)
- Progression on or following PD-1/L1 inhibitor in combination with or following chemotherapy
- Excludes patients with known driver mutations

Primary Endpoint:
- OS

Secondary Endpoints:
- PFS
- ORR
- Safety

Sitravatinib 100 mg QD^a + nivolumab 240 mg Q2W or 480 mg Q4W (n=266)

Docetaxel 75 mg/m² Q3W (n=266)

^aNewly randomized patients will receive sitravatinib malate capsule formulation administered orally at starting dose of 100 mg once daily (QD). Patients enrolled in the United States who began treatment with the sitravatinib free-base capsule formulation will remain on the free-base capsule formulation throughout the duration of the study; the starting dose of sitravatinib free-base capsule formulation is 120 mg QD.

Presented at the European Society for Medical Oncology (ESMO) Congress, 18 September 2021
Acknowledgments

- The patients and their families who made this trial possible
- The clinical study teams for their work and contributions
- This study was supported by Mirati Therapeutics, Inc.
- All authors contributed and approved this presentation; writing and editorial assistance was provided by Charlotte Caine of Axiom Healthcare Strategies, funded by Mirati Therapeutics, Inc.
Investigators

Abhinav Chandra
Yuma Regional Cancer Center

Alexander I. Spira
Virginia Cancer Specialists, US Oncology Research

Alison Savage
Asante Rogue Regional Medical Center

Anthony Pham
Northwest Cancer Specialists

Collin M. Blakely
University of California, San Francisco and Helen Diller Family Comprehensive Cancer Center

David Berz
Beverly Hills Cancer Center

David S. Hong
The University of Texas MD Anderson Cancer Center

David M. Waterhouse
OHC, Texas Oncology

Debora S. Bruno
Case Comprehensive Cancer Center, Case Western Reserve University

Donald Richards
Texas Oncology

Edward B. Garon
David Geffen School of Medicine at the University of California

Erminia Massarelli
City of Hope

Hatim Husain
University of California San Diego Moores Cancer Center

Hossein Borghaei
Fox Chase Cancer Center

Igor I. Rybkin
Henry Ford Cancer Institute

James Uyeki
Texas Oncology

Kai He
The Ohio State University Comprehensive Cancer Center

Manish R. Patel
University of Minnesota Masonic Cancer Center

Robert Jotte
Rocky Mountain Cancer Centers

Ryan Ramaekers
Saint Francis Cancer Treatment Center

Tammy Roque
USOR-Texas Oncology

Ticiana A. Leal
University of Wisconsin Carbone Cancer Center Emory University

Timothy Larson
Minnesota Oncology Hematology

Wade T. Iams
Vanderbilt-Ingram Cancer Center

Wangjian Zhong
Baptist Health
References

9. Leal T, Horn L. Presented at: 2017 World Congress on Lung Cancer (WCLC 2017); October 15-18, 2017; Yokohama, Japan.
Abbreviations

2L, second line
3L, third line
AE, adverse event
ALT, alanine aminotransferase
AST, aspartate aminotransferase
CBR, clinical benefit rate
CI, confidence interval
CPI, checkpoint inhibitor
CR, complete response
DCR, disease control rate
DOR, duration of response
ECOG, Eastern Cooperative Oncology Group

HNSCC, head and neck squamous cell carcinoma
iDC, immature dendritic cells
irAEs, immune-related adverse events
mDC, myeloid dendritic cells
MDSCs, myeloid-derived suppressor cells
NSCLC, non–small-cell lung cancer
ORR, objective response rate
OS, overall survival
PCB, prior clinical benefit
PD, progressive disease
PFS, progression-free survival
PPE, palmar-plantar erythrodyesthesia
PR, partial response
PS, performance status
QD, once daily
Q2W, every 2 weeks
RTK, receptor tyrosine kinase
SD, stable disease
TKI, tyrosine kinase inhibitor
TME, tumor microenvironment
TSH, thyroid-simulating hormone
Tregs, T regulatory cells
TRAEs, treatment-related adverse events
VEGFR, vascular endothelial growth factor receptor