KRYS#AL-1: ACTIVITY AND PRELIMINARY PHARMACODYNAMIC (PD) ANALYSIS OF ADAGRASIB (MRTX849) IN PATIENTS (PTS) WITH ADVANCED NON–SMALL-CELL LUNG CANCER (NSCLC) HARBORING KRASG12C MUTATION

Gregory J. Riely¹, Sai-Hong Ignatius Ou², Igor I. Rybkin³, Alexander I. Spira⁴, Kyriakos P. Papadopoulos⁵, Joshua K. Sabari⁶, Melissa L. Johnson⁷, Rebecca S. Heist⁸, Lyudmila Bazhenova⁹, Minal Barve¹⁰, Jose M. Pacheco¹¹, Ticiana A. Leal¹², Karen Velastegui¹³, Cornelius Cilliers¹³, Peter Olson¹³, James G. Christensen¹³, Thian Kheoh¹³, Richard C. Chao¹³, Pasi A. Jänne¹⁴

¹Thoracic Oncology Service, Division of Solid Tumor, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA; ²University of California, Irvine, Chao Family Comprehensive Cancer Center, Orange, CA, USA; ³Henry Ford Cancer Institute, Detroit, MI, USA; ⁴Virginia Cancer Specialists, Fairfax, VA, USA; US Oncology Research, The Woodlands, TX, USA; ⁵START Center for Cancer Care, San Antonio, TX, USA; ⁶Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA; ⁷Sarah Cannon Research Institute, Nashville, TN, USA; ⁸Massachusetts General Hospital, Boston, MA, USA; ⁹Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; ¹⁰Mary Crowley Cancer Research, Dallas, TX, USA; ¹¹Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; ¹²University of Wisconsin Carbone Cancer Center, Madison, WI, USA; ¹³Mirati Therapeutics, Inc., San Diego, CA, USA; ¹⁴Dana-Farber Cancer Institute, Boston, MA, USA.
DECLARATION OF INTERESTS

Gregory J. Riely

Institutional research funding from Mirati, Merck, Novartis, Pfizer, Takeda, and Roche
Adagrasib (MRTX849) Is a Differentiated, Selective Inhibitor of KRASG12C

- KRASG12C mutations act as oncogenic drivers and occur in approximately 14% of NSCLC (adenocarcinoma)$^{1-3}$
- The KRAS protein cycles between GTP-on and GDP-off states and has a protein resynthesis half-life of ~24 h4,5
- Adagrasib is a covalent inhibitor of KRASG12C that irreversibly and selectively binds KRASG12C in its inactive, GDP-bound state6
- Adagrasib was optimized for desired properties of a KRASG12C inhibitor:
 - Potent covalent inhibitor of KRASG12C (cellular IC$_{50}$: ~5 nM)
 - High selectivity (>1000X) for the mutant KRASG12C protein vs wild-type KRAS
 - Favorable PK properties, including oral bioavailability, long half-life (~24 h), and extensive tissue distribution

Hypothesis: Maintaining continuous exposure of adagrasib above a target threshold enables inhibition of KRAS-dependent signaling for the complete dosing interval and maximizes depth and duration of antitumor activity.
KRYS\textbf{TA}L-1 (849-001) Study Design

Phase 1
Dose Escalation

- 150 mg QD
- 300 mg QD
- 600 mg QD
- 1200 mg QD

Expansion
- 600 mg BID

Phase 1B
Dose Expansion and Combination

- Adagrasib monotherapy NSCLC
 n=18 (Phase 1/1b)

Phase 2
Monotherapy Treatment

- NSCLCc n=61
- CRC
- Other solid tumors

Key Eligibility Criteria

- **Up to n=391**
 - Solid tumor with KRASG12C mutation
 - Unresectable or metastatic disease
 - Progression on or following treatment with a PD-1/L1 inhibitor in combination with or following chemotherapy (NSCLC)a
 - Treated and/or stable brain metastasesb

Phase 1 Endpoints

- Primary: Safety, MTD, PK, RP2D
- Secondary: Objective Response (RECIST 1.1), DOR, PFS, OS

Phase 2 Endpoints

- Primary: ORR (RECIST 1.1)
- Secondary: Safety

- Here we report data for 79 patients evaluating adagrasib 600 mg BID in patients with previously treated NSCLC in Phase 1/1b (n=18; median follow-up, 9.6 months) and Phase 2 (n=61); pooled (n=79) median follow-up, 3.6 months
- Exploratory data will be presented, including PD markers, gene set enrichment analyses, and immune transcript analyses
- Clinical outcome data cutoff date: 30 August 2020

aApplies to the majority of NSCLC cohorts. bMost cohorts allow patients with brain metastases if adequately treated and stable; additional Phase 1/1b cohort allows limited brain metastases. cPrimary NSCLC cohort eligibility based on a tissue test; KRASG12C testing for entry was performed locally or centrally using a sponsor preapproved test. ClinicalTrials.gov. NCT03785249.

Presented at the European Lung Cancer Conference (ELCC), March 25-27, 2021.
Patient Demographics and Baseline Characteristics: NSCLC

<table>
<thead>
<tr>
<th></th>
<th>Phase 1/1b 600 mg BID (n=18)</th>
<th>Phase 1/1b and 2 600 mg BID (n=79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, y (range)</td>
<td>65 (40-76)</td>
<td>65 (25-85)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>11 (61%)</td>
<td>45 (57%)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>15 (83%)</td>
<td>67 (85%)</td>
</tr>
<tr>
<td>Black</td>
<td>3 (17%)</td>
<td>5 (6%)</td>
</tr>
<tr>
<td>Asian</td>
<td>0 (0%)</td>
<td>5 (6%)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8 (44%)</td>
<td>17 (22%)</td>
</tr>
<tr>
<td>1</td>
<td>10 (56%)</td>
<td>62 (78%)</td>
</tr>
<tr>
<td>Current/former smokers</td>
<td>16 (89%)</td>
<td>75 (95%)</td>
</tr>
<tr>
<td>Nonsquamous histology, n (%)</td>
<td>18 (100%)</td>
<td>76 (96%)</td>
</tr>
<tr>
<td>Prior lines of anticancer therapy, median (range)</td>
<td>3 (1-9)</td>
<td>2 (1-9)</td>
</tr>
<tr>
<td>Prior anti–PD-1/L1 inhibitor, n (%)</td>
<td>16 (89%)</td>
<td>73 (92%)</td>
</tr>
</tbody>
</table>

Phase 2 patients with NSCLC received prior treatment with platinum regimens.

Data as of 30 August 2020. The pooled dataset includes data from the NSCLC Phase 1/1b and Phase 2 600 mg BID cohorts.

KRYSTAL-1: Adagrasib (MRTX849) KRAS^{G12C} Inhibitor in NSCLC

Presented at the European Lung Cancer Conference (ELCC), March 25-27, 2021
Adagrasib at 600 mg BID Exhibits Favorable PK Properties; Exposure Maintained Above Target Plasma Thresholds Throughout Full Dosing Interval

Adagrasib Steady-State Concentration (C1, D8)

PK Properties Summary:

• C_{ave} of 2.63 µg/mL is 2- to 5-fold above target threshold for the full dosing interval
• C_{ave} PK parameter best matched to nonclinical antitumor activity
• Low peak to trough ratio at steady state (~1.27)
• Half-life ~ 24 hours
• Extensive volume of distribution predicted based on nonclinical studies

$N = 17^a$

aIncludes 14 patients with NSCLC, 1 patient with CRC, and 2 patients with appendiceal cancer from Phase 1/1b.

Data as of 18 March 2020.
Mechanistic Biomarker Analyses Suggest Downregulation of KRAS/MAPK Pathway Genes in Tumor Tissue from Adagrasib-Treated Patients

Gene Set Enrichment Analysis (GSEA) Post-Adagrasib
(Cycle 1, Day 8)

KRAS Signaling Up
KRAS Signaling Down
MYC Targets V1
MYC Targets V2
E2F Targets
G2M Checkpoint
MTORC1 Signaling

• GSEA demonstrated significantly altered hallmark pathways, including MYC, KRAS, E2F, G2M, and MTORC1 in patient tumors following adagrasib treatment (n=3 NSCLC)
• MAPK target genes downregulated in several post-adagrasib-treated biopsies
• Robust plasma coverage of KRAS is consistent with evidence of KRAS/ERK pathway inhibition in tumor tissue

Note: Tumor biopsies from patients with NSCLC treated at 600 mg BID were harvested at baseline and cycle 1, day 8 (adagrasib steady state) and were subjected to targeted RNA sequencing analysis. *** refers to a false discovery rate (FDR) < 0.25.

KRAS Signaling Subset—Fold Changes by Patient

-1
0
1

DUSP6
ETV4
SPRY4

Genes

Patient 1
Patient 2
Patient 3

Patient 1
Patient 2
Patient 3

Normalized Enrichment Score, NES

-4
-3
-2
-1
0
1

log2FC
Incidence of Treatment-Related Adverse Events

<table>
<thead>
<tr>
<th>TRAEs<sup>b,c</sup>, %</th>
<th>Any Grade</th>
<th>Grades 3-4</th>
<th>Grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any TRAEs</td>
<td>85%</td>
<td>30%</td>
<td>2%</td>
</tr>
<tr>
<td>Most frequent TRAEs<sup>a,d</sup>, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>54%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>51%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>35%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>32%</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>Increased ALT</td>
<td>20%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>Increased AST</td>
<td>17%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>Increased blood creatinine</td>
<td>15%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>15%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>QT prolongation</td>
<td>14%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Anemia</td>
<td>13%</td>
<td>2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Grade 5 TRAEs included pneumonitis in a patient with recurrent pneumonitis (n=1) and cardiac failure (n=1)
- 4.5% of TRAEs led to discontinuation of treatment

^aIncludes patients pooled from Phase 1/1b and Phase 2 NSCLC (n=79), and CRC and Phase 2 other tumor cohorts (n=31).
^bIncludes events reported between the first dose and 30 August 2020.
^cThe most common treatment-related SAEs reported (2 patients each) reported were diarrhea (grade 1, grade 2) and hyponatremia (both grade 3).
^dOccurred in ≥10%.

Data as of 30 August 2020.
Adagrasib in Patients With NSCLC: ORR in Pooled Dataset

<table>
<thead>
<tr>
<th>Efficacy Outcomea, n (%)</th>
<th>Phase 1/1b, NSCLC 600 mg BID (n=14)</th>
<th>Phase 1/1b and 2, NSCLC 600 mg BID (n=51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Response Rate</td>
<td>6 (43%)</td>
<td>23 (45%)b</td>
</tr>
<tr>
<td>Best Overall Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Response (CR)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Partial Response (PR)</td>
<td>6 (43%)</td>
<td>23 (45%)</td>
</tr>
<tr>
<td>Stable Disease (SD)</td>
<td>8 (57%)</td>
<td>26 (51%)</td>
</tr>
<tr>
<td>Progressive Disease (PD)</td>
<td>0 (0%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Not Evaluable (NE)</td>
<td>0 (0%)</td>
<td>1 (2%)c</td>
</tr>
<tr>
<td>Disease Control</td>
<td>14 (100%)</td>
<td>49 (96%)</td>
</tr>
</tbody>
</table>

aBased on investigator assessment of the clinically evaluable patients (measurable disease with ≥1 on-study scan); 14/18 patients (Phase 1/1b) and 51/79 patients (Phase 1/1b and 2 pooled) met these criteria. bAt the time of the 30 August 2020 data cutoff, 5 patients had unconfirmed PRs. All 5 PRs were confirmed by scans that were performed after the 30 August 2020 data cutoff. cOne patient had tumor reimaging too early for response assessment.

Data as of 30 August 2020. The pooled dataset includes data from the NSCLC Phase 1/1b and Phase 2 600 mg BID cohorts.
Clinical benefit (DCR) observed in 96% (49/51) of patients

Two timepoint assessments of CR were separated by recurrent disease associated with treatment interruption due to hypoxia; this patient remains on treatment and in 2 consecutive scans (1 after August 30 data cutoff) demonstrated 100% tumor regression in target and nontarget lesions after resuming treatment.

Data as of 30 August 2020. The pooled dataset includes data from NSCLC Phase 1/1b and Phase 2 600 mg BID cohorts.
Duration of Treatment in Patients With NSCLC Treated With Adagrasib 600 mg BID in Phase 1/1b

Duration of Treatment, n=14

- Median follow-up, 9.6 months
- 5 of the 6 responders remain on treatment; treatment is ongoing for >11 months for the majority of patients with responses (4/6)
- Median time to response, 1.5 months

Data as of 30 August 2020.

Duration of Treatment (months)

| Median (range) | 8.2 (1.4, 13.1+) |

Presented at the European Lung Cancer Conference (ELCC), March 25-27, 2021
Preliminary Exploratory Correlative Analysis of Co-Mutations With $\text{KRAS}^{\text{G12C}}$, Including STK11, and Response Rate in Patients With NSCLC Treated With Adagrasib

- Baseline NGS reports reviewed for exploratory correlative analysis for all patients with NSCLC with available mutation data.
- **64% ORR** in patients with tumors harboring $\text{KRAS}^{\text{G12C}}$ and STK11 co-mutations
- No apparent trend with KEAP1, TP53, or other common mutations and response rate

Analysis includes key mutations detected at baseline in tumor and/or plasma that commonly occur with $\text{KRAS}^{\text{G12C}}$. Mutations included as positive include nonsense, frameshift, splice site, and recurrent mutations predicted to have deleterious impact, and excluded variants of unknown significance.

Data as of 30 August 2020. Based on unaudited data.
Tumors Harboring STK11 Co-mutations Were Immune “Cold” at Baseline and Exhibited Increased Immune Response Transcripts After Treatment With Adagrasib

- Low expression of immune transcripts in pretreatment tumors with STK11 co-mutations suggests an immune “cold” phenotype
- Increase in immune transcripts and activation of IFN signatures, (e.g., CD4, CD8), observed in 2 of 3 patients after adagrasib treatment
- **Hypothesis:** Adagrasib treatment recruits T cells into the tumor and may reverse STK11-mediated immune suppression

Note: Patient 4 had 5% tumor present on the post–adagrasib-treated tumor biopsy at C1D8.
Conclusions

• Adagrasib is a KRASG12C-selective covalent inhibitor with a long half-life and extensive predicted target coverage throughout the dosing interval.

• Adagrasib is well tolerated and provides durable responses and broad disease control to patients with NSCLC harboring KRASG12C mutations.

• In an exploratory genomic analysis, ORR was higher in patients with tumors harboring KRASG12C and STK11 co-mutations.

• Initial biomarker analyses post-treatment with adagrasib indicate downregulation of KRAS/MAPK pathway genes and an increase in immune transcripts in patients with STK11 co-mutations.

• Adagrasib is being evaluated as 1L monotherapy in patients with NSCLC with KRASG12C and STK11 co-mutations in a new cohort of KRYSTAL-1.
Acknowledgments

• The patients and their families who make this trial possible
• The clinical study teams for their work and contributions
• This study is supported by Mirati Therapeutics, Inc.
• All authors contributed to and approved this presentation; writing and editorial assistance were provided by Andrew Hong of Axiom Healthcare Strategies, funded by Mirati Therapeutics, Inc.
Investigators

Harshad Amin
Boca Raton Clinical Research
Global USA

Daniel Anderson
Metro-Minnesota Community Oncology Research Consortium

Minal Barve
Mary Crowley Cancer Center

Bruno R. Bastos
Miami Cancer Institute and Baptist Health of South Florida

Lyudmila Bazhenova
Moores Cancer Center, University of California San Diego

Tanios Bekai-Saab
Mayo Clinic

David Berz
Beverly Hills Cancer Center

Alberto Bessudo
California Cancer Associates for Research and Excellence

Alejandro Calvo
Kettering Cancer Center

Patrick Cobb
Sisters of Charity of Leavenworth Health St. Mary’s

Mike Cusmir
Mount Sinai Comprehensive Cancer Center

Keith Eaton
Seattle Cancer Care Alliance

Yousuf Gaffar
Maryland Oncology Hematology

Navid Hafez
Yale Cancer Center

David Hakimian
Illinois Cancer Specialists

Rebecca S. Heist
Massachusetts General Hospital

Pasi A Jänne
Dana-Farber Cancer Institute

Melissa L. Johnson
Sarah Cannon Research Institute Tennessee Oncology

Han Koh
Kaiser Permanente

Scott Kruger
Virginia Oncology Associates

Timothy Larson
Minnesota Oncology

Ticiana A. Leal
University of Wisconsin Carbone Cancer Center

Konstantinos Leventakos
Mayo Clinic

Yanyan Lou
Mayo Clinic

Steven McCune
Northwest Georgia Oncology Centers

Jamal Misleh
Medical Oncology Hematology Consultants

Suresh Nair
Lehigh Valley Physician Group

Marcelo Negrao
MD Anderson Cancer Center

Gregg Newman
Ridley-Tree Cancer Center

San-Hong Ignatius Ou
University of California, Irvine, Chao Family Comprehensive Cancer Center

Rami Owera
Woodlands Medical Specialists

Jose M. Pacheco
University of Colorado Anschutz Medical Campus

Kyriakos P. Papadopoulos
START Center for Cancer Care

David Park
Virginia K. Crosson Cancer Center

Andrew Paulson
Texas Oncology

Muhammad Riaz
University of Cincinnati Health Barret Cancer Center

Donald Richards
Texas Oncology

Gregory J. Riely
Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College

Francisco Robert
University of Alabama at Birmingham School of Medicine

Richard Rosenberg
Arizona Oncology

Peter Rubin
MaineHealth Cancer Care

Robert Ruxer
Texas Oncology

Igor I. Rybkin
Henry Ford Cancer Institute

Joshua Sabari
New York University Langone Health, New York University Perlmutter Cancer Center

Alexander I. Spira
Virginia Cancer Specialists, US Oncology Research

Caesar Tin-U
Texas Oncology

Anthony Van Ho
Compass Oncology

Jared Weiss
Lineberger Comprehensive Cancer Center, University of North Carolina

John Wrangle
Medical University of South Carolina

Edwin Yau
Roswell Park Comprehensive Cancer Center

Jeffrey Yorio
Texas Oncology

Jun Zhang
University of Kansas Medical Center

Presented at the European Lung Cancer Conference (ELCC), March 25-27, 2021
References

Abbreviations

ALT = alanine aminotransferase
AST = aspartate aminotransferase
BID = twice daily
C_{ave} = average plasma concentration
CBR = clinical benefit rate
CR = complete response
CRC = colorectal cancer
CSF = cerebrospinal fluid
DCR = disease control rate
DOR = duration of response
ECOG = Eastern Cooperative Oncology Group
IC$_{50}$ = half maximal inhibitory concentration
IFN = interferon
MTD = maximum tolerated dose
NE = not evaluable
NSCLC = non–small-cell lung cancer
ORR = objective response rate
OS = overall survival
PD = progressive disease
PFS = progression-free survival
PK = pharmacokinetics
PR = partial response
PS = performance status
QD = once daily
RP2D = recommended Phase 2 dose
SAE = serious adverse event
SD = stable disease
TRAE = treatment-related adverse event