KRYSITL-1: Updated Activity and Safety of Adagrasib (MRTX849) in Patients (Pts) With Unresectable or Metastatic Pancreatic Cancer (PDAC) and Other Gastrointestinal (GI) Tumors Harboring a KRASG12C Mutation

TS Bekaii-Saab1, Al Spira2, R Yaeger3, GL Buchschacher Jr.4, AJ McRee5, JK Sabari6, ML Johnson7, M Barve8, N Hafez9, K Velastegui10, JG Christensen10, T Kheoh10, H Der-Torossian10, SM Gadgeel11

1Department of Medical Oncology and Hematology, Mayo Clinic, Scottsdale, Arizona, USA; 2Virginia Cancer Specialists, Fairfax, Virginia, NEXT Oncology, Virginia, US Oncology Research, The Woodlands, Texas, USA; 3Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; 4Kaiser Permanente Southern California, Los Angeles, California, USA; 5Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA; 6Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA; 7Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee, USA; 8Mary Crowley Cancer Research, Dallas, Texas, USA; 9Yale Cancer Center, New Haven, Connecticut, USA; 10Mirati Therapeutics, Inc., San Diego, California, USA; 11Henry Ford Cancer Institute/Henry Ford Health System, Detroit, Michigan, USA
Adagrasib (MRTX849) is a Differentiated, Selective Inhibitor of KRASG12C

- KRAS mutations occur in approximately 90% of pancreatic cancer1; ~2% of these are KRASG12C mutations2
- The KRAS protein cycles between GTP-on and GDP-off states and has a protein resynthesis half-life of ~24 hours3,4
- Adagrasib, a covalent inhibitor of KRASG12C, irreversibly and selectively binds KRASG12C in its inactive, GDP-bound state
- Adagrasib was optimized for desired properties of a KRASG12C inhibitor5:
 - Long half-life of ~24 hours
 - Dose-dependent PK
 - CNS penetration
- Maintaining continuous exposure of adagrasib above a target threshold enables inhibition of KRAS-dependent signaling for the complete dose interval and maximizes depth and duration of antitumor activity

CNS, central nervous system; EGFR, epidermal growth factor receptor; PK, pharmacokinetics; RTK, receptor tyrosine kinase.
KRYS TAL-1 (849-001) Study Design

Key Eligibility Criteria
- Solid tumor with KRAS\(^{G12C}\) mutation
- Unresectable or metastatic disease
- Treated and/or stable brain metastases\(^a\)

Phase 1
- Dose Escalation\(^b\)
 - 600 mg BID Expansion
 - 1200 mg QD\(^c\)
 - 600 mg QD\(^c\)
 - 300 mg QD\(^c\)
 - 150 mg QD\(^c\)

Phase 1b
- Dose Expansion and Combination\(^b\)
 - Adagrasib monotherapy in solid tumors
 - Adagrasib brain metastases in solid tumors
 - Adagrasib NSCLC treatment-naïve
 - Adagrasib NSCLC prior KRAS\(^{G12C}\) inhibitor
 - Adagrasib + pembrolizumab in NSCLC
 - Adagrasib + afatinib in NSCLC
 - Adagrasib + cetuximab in CRC
 - Adagrasib + cetuximab in NSCLC / PDAC
 - Adagrasib in NSCLC (tablet formulation)

Phase 2
- Monotherapy and Combination Treatment
 - NSCLC
 - Adagrasib
 - CRC
 - Adagrasib
 - Other solid tumors (N=42)\(^b,d\)
 - (GI tumors, n=30)
 - Adagrasib
 - Treatment-Naïve NSCLC
 - Adagrasib: KRAS\(^{G12C}\) and STK11 mutation
 - CRC
 - Adagrasib +/- cetuximab

Phase 2 Endpoints
- **Primary:** ORR (RECIST 1.1)
- **Secondary:** DOR, PFS, OS, safety

Previously reported data demonstrated clinical activity with adagrasib in patients with various KRAS\(^{G12C}\)-mutated solid tumors, including NSCLC, CRC and other tumors such as PDAC, ovarian and endometrial cancers, and cholangiocarcinoma\(^1-3\)

Here we report preliminary data from a Phase 2 cohort evaluating adagrasib 600 mg BID in patients with previously-treated GI tumors (n=30), excluding CRC, with a focus on PDAC (n=12) and other GI cancers (n=18), with a KRAS\(^{G12C}\) mutation

CRC, colorectal cancer; ctDNA, circulating tumor deoxyribonucleic acid; GI, gastrointestinal; NSCLC, non–small-cell lung cancer; PDAC, pancreatic ductal adenocarcinoma.

*Most cohorts allow patients with brain metastases if adequately treated and stable; additional phase 1/1b cohort allows limited brain metastases; \(^a\)KRAS\(^{G12C}\) mutation detected in tumor tissue and/or ctDNA; \(^b\)Patients subsequently dose escalated up to 600 mg BID; \(^c\)Solid tumors included GI tumors (n=30) and non-GI tumors (n=12).

Data as of 10 September 2021. ClinicalTrials.gov. NCT03785249.
Demographics and Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>PDAC (n=12)</th>
<th>Other GI cancers (n=18)</th>
<th>Overall GI cancers(^a) (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, y (range)</td>
<td>66.5 (40–80)</td>
<td>64.0 (54–89)</td>
<td>65.5 (40–89)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>4 (33)</td>
<td>8 (44)</td>
<td>12 (40)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>7 (58)</td>
<td>13 (72)</td>
<td>20 (67)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>1 (8)</td>
<td>2 (11)</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Asian / Other</td>
<td>1 (8) / 3 (25)</td>
<td>1 (6) / 2 (11)</td>
<td>2 (7) / 5 (17)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 / 1</td>
<td>0 (0) / 12 (100)</td>
<td>6 (33) / 12 (67)</td>
<td>6 (20) / 24 (80)</td>
</tr>
<tr>
<td>Tumor type, n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDAC</td>
<td>12</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Other GI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biliary tract</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Appendiceal</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Gastro-esophageal junction</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Small bowel</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Esophageal</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Prior lines of systemic anticancer therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>2.5 (1–4)(^b)</td>
<td>2.0 (1–5)</td>
<td>2.0 (1–5)</td>
</tr>
<tr>
<td>1 / 2 / 3 / ≥4 / missing, %</td>
<td>8 / 42 / 42 / 8</td>
<td>22 / 39 / 11 / 22 / 6</td>
<td>17 / 40 / 23 / 17 / 3</td>
</tr>
</tbody>
</table>

Percentages may not add up to 100 due to rounding.

ECOG PS, Eastern Cooperative Oncology Group performance status.

\(^a\)Excluding CRC; \(^b\)All patients with PDAC received gemcitabine-based regimen(s), and all but 2 received prior fluoropyrimidine-based regimen(s).
Adagrasib in Patients With PDAC and Other GI Tumors: Objective Response Rate

A total of 30 patients were enrolled: 12 PDAC, 18 Other GI.

Excluding CRC; Based on investigator assessment of the clinically evaluable patients (measurable disease with ≥1 on-study scan); Evaluable population (n=10) excludes 2 patients who had discontinued treatment prior to first scan due to unrelated adverse events and were not evaluable for clinical activity; Evaluable population (n=17) excludes 1 patient who withdrew consent prior to the first scan; Includes 1 unconfirmed PR as of data cut-off; Includes 2 unconfirmed PR as of data cut-off; Includes 3 unconfirmed PR as of data cut-off.

Data as of 10 Sept 2021 (median follow-up: overall, 6.3 months; PDAC, 8.1 months; other GI cancers: 6.3 months).

<table>
<thead>
<tr>
<th>Efficacy outcome</th>
<th>PDAC (n=10)</th>
<th>Other GI cancers (n=17)</th>
<th>Overall GI cancers (n=27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective response rate</td>
<td>5 (50)</td>
<td>6 (35)</td>
<td>11 (41)</td>
</tr>
<tr>
<td>Best overall response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response (CR)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Partial response (PR)</td>
<td>5 (50)</td>
<td>6 (35)</td>
<td>11 (41)</td>
</tr>
<tr>
<td>Stable disease (SD)</td>
<td>5 (50)</td>
<td>11 (65)</td>
<td>16 (59)</td>
</tr>
<tr>
<td>Disease control rate</td>
<td>10 (100)</td>
<td>17 (100)</td>
<td>27 (100)</td>
</tr>
</tbody>
</table>
Adagrasib in Patients With Unresectable or Metastatic PDAC: Best Tumor Change From Baseline and Duration of Treatment

- Response rate: 50% (5/10), including 1 unconfirmed PR
- SD: 50% (5/10 patients)
- DCR: 100% (10/10 patients)

- Median TTR: 2.8 months
- Median DOR: 6.97 months
- Median PFS: 6.6 months (95% CI 1.0–9.7)
- Treatment ongoing in 50% (5/10) of patients

Evaluation population (n=10) excludes 2 patients who had discontinued treatment prior to first scan due to unrelated adverse events and were not evaluable for clinical activity; all results are based on investigator assessments; at data cut-off, 1 patient had unconfirmed PR.

Data as of 10 Sept 2021 (median follow-up: 8.1 months).
Adagrasib in Patients With Other GI Tumors:a
Best Tumor Change From Baseline and Duration of Treatment

Best Tumor Change From Baseline (n=17)b,c

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Evaluable Patients</th>
<th>Maximum % Change From Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biliary Tract (n=8)</td>
<td>GEJ (n=1)</td>
<td>SD, SD, SD, SD, SD, SD, SD, SD</td>
</tr>
<tr>
<td>Appendiceal (n=5)</td>
<td>Esophageal (n=1)</td>
<td>SD, SD, SD, SD, SD, SD, SD, SD</td>
</tr>
<tr>
<td>Small Bowel (n=2)</td>
<td></td>
<td>SD, SD, SD, SD, SD, SD, SD, SD</td>
</tr>
</tbody>
</table>

Duration of Treatment (n=17)b,c

- **Response rate:**
 - Biliary tract cancer: 50% (4/8), including 2 unconfirmed PRs
 - GEJ and small bowel cancer: 1 PR each
 - DCR: 100% (17/17 patients)

- **DCR, disease control rate; DOR, duration of response; GEJ, gastro-esophageal junction; PR, partial response; SD, stable disease; TTR, time to response.**

- Data as of 10 Sept 2021 (median follow-up: 6.3 months).

- **Median TTR: 1.3 months**
- **Median DOR: 7.85 months**
- **Median PFS: 7.85 months (95% CI 6.90–11.30)**
- **Treatment ongoing in 65% (11/17) of patients**

*aExcluding CRC and PDAC; bEvaluable population (n=17) excludes 1 patient who withdrew consent prior to the first scan; cAll results are based on investigator assessments; d1 patient with appendiceal cancer and 1 patient with esophageal cancer had maximum % change from baseline of 0; eAt data cut-off, 2 patients had unconfirmed PR.
Adagrasib in Patients With Other Advanced Solid Tumors: \(^a\)
Incidence of Treatment-Related Adverse Events

<table>
<thead>
<tr>
<th>Most Frequent TRAEs(^b)</th>
<th>Overall (N=42)(^c)</th>
<th>Overall GI cancers(^d) (n=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAEs, %</td>
<td>Any Grade</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Any TRAEs</td>
<td>91</td>
<td>21</td>
</tr>
<tr>
<td>Most frequent TRAEs, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>Vomiting</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td>AST increase</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>Blood creatinine increase</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Anemia</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>QT prolongation</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>ALT increase</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

- No Grade 4 or 5 TRAEs
- No TRAEs led to discontinuation

ALT, alanine aminotransferase; AST, aspartate aminotransferase; TRAE, treatment-related adverse event.
\(^a\)Excluding NSCLC and CRC; \(^b\)Occurring in ≥10% of patients; \(^c\)Overall population included 12 other non-GI cancers (ovarian [n=4], endometrial [n=2], breast [n=1], glioblastoma [n=1], and unknown primary [n=4]); \(^d\)Excluding CRC. Data as of 10 Sept 2021 (median follow-up: 6.3 months).
Conclusions

- Adagrasib is a KRASG12C-selective covalent inhibitor with a long half-life that enables exposure above a target threshold throughout the dosing interval.

- Adagrasib monotherapy demonstrated promising clinical activity and 100% disease control in previously treated patients with PDAC and other GI (non-CRC) tumors harboring a KRASG12C mutation.
 - Of the tumor histologies with >5 patients evaluable, response rates for PDAC and biliary tract cancer were 50%.

- Adagrasib has now demonstrated responses across multiple tumor types (NSCLC, CRC, PDAC, biliary tract, GEJ, small bowel, ovarian and endometrial cancers)1–3

- Adagrasib monotherapy is well tolerated and has a manageable safety profile.

- Further exploration of adagrasib is ongoing in the KRYSTAL-1 trial (NCT03785249), and a newly initiated early access program (NCT05162443) is available to this patient population.

Acknowledgments

- The patients and their families for making this trial possible

- The clinical study teams and investigators for their work and contributions

- This study is supported by Mirati Therapeutics, Inc.

- The authors would like to thank Igor Rybkin for his role at Henry Ford Health System for his contribution to this study

- All authors contributed to and approved this presentation; writing and editorial assistance were provided by Flaminia Fenoaltea, MSc, and Alex Coulthard, BSc, of Ashfield MedComms, funded by Mirati Therapeutics, Inc.
Investigators

John Adams
USOR Texas Oncology Arlington

Daniel Anderson
Metro-Minnesota Community Oncology Research Consortium

Minal Barve
Mary Crowley Cancer Research

Bruno Bastos
Miami Cancer Institute

Tanios Bekaii-Saab
Mayo Clinic, Arizona

Muhammad Furqan
University of Iowa

Shirish M. Gadgeel
Henry Ford Cancer Institute/ Henry Ford Health System

Yousuf Gaffar
Maryland Oncology Hematology

Navid Hafez
Yale Cancer Center

Kai He
Ohio State University

Melissa L. Johnson
Sarah Cannon Research Institute

Han Koh
Kaiser Permanente

Charles Kuzma
Firsthealth Outpatient Cancer Center

Timothy Larson
USOR Minnesota Oncology

Ticiana A. Leal
University of Wisconsin Carbone Cancer Center

Konstantinos Leventakos
Mayo Clinic, Rochester

Patrick Ma
Penn State Cancer Institute

Steven McCune
Northwest Georgia Oncology Center

Santosh Nair
Mid Florida Cancer Centers

Sujatha Nallapareddy
USOR Rocky Mountain Cancer Centers

Gregg Newman
Ridley Tree Cancer Center

Sai-Hong Ignatius Ou
University of California Irvine

Donald Richards
Texas Oncology

Gregory J. Riely
Memorial Sloan Kettering Cancer Center

Joshua Sabari
Perlmutter Cancer Center

Leo Shunyakov
Central Cancer Center Bolivar

Alexander I. Spira
Virginia Cancer Specialists

Jared Weiss
University of North Carolina

Edwin Yau
Roswell Park Comprehensive Center

Jun Zhang
University of Kansas