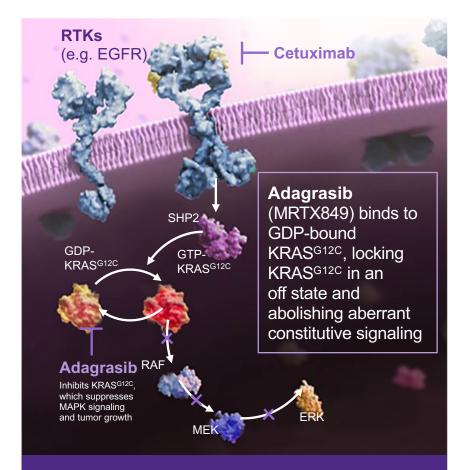


Adagrasib With or Without Cetuximab in Patients With KRAS^{G12C}-Mutated Colorectal Cancer (CRC): Analysis of Tumor Biomarkers and Genomic Alterations

Meredith S. Pelster¹, Rona Yaeger², Samuel J. Klempner³, Sai-Hong Ignatius Ou⁴, Alexander I. Spira⁵, Pasi A. Jänne⁶, Nataliya V. Uboha⁷, Yousuf A. Gaffar⁸, Gregg Newman⁹, Cloud P. Paweletz⁶, Grace A. Heavey⁶, Linh Alejandro¹⁰, Thian Kheoh¹⁰, Kenna Anderes¹⁰, Hirak Der-Torossian¹⁰, James G. Christensen¹⁰, Jared Weiss¹¹

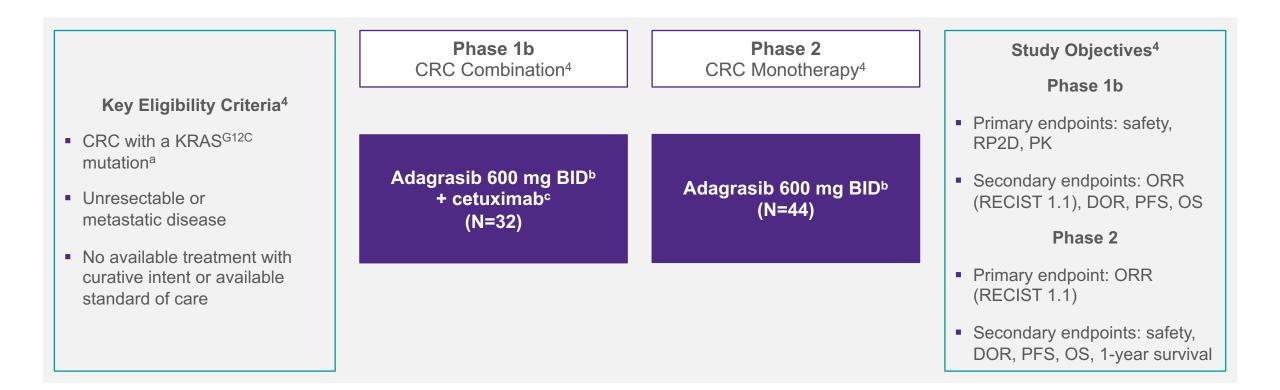
 ¹Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee, USA; ²Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ³Massachusetts General Cancer Center, Boston, Massachusetts, USA; ⁴University of California Irvine, Chao Family Comprehensive Cancer Center, Orange, California, USA;
 ⁵Virginia Cancer Specialists, US Oncology Research, Fairfax, Virginia, USA; ⁶Dana-Farber Cancer Institute, Boston, Massachusetts, USA; ⁷University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA;
 ⁸Maryland Oncology Hematology, Columbia, Maryland, USA; ⁹Ridley-Tree Cancer Center, Santa Barbara, California, USA;
 ¹⁰Mirati Therapeutics, Inc., San Diego, California, USA; ¹¹University of North Carolina-Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA

Copies of this presentation can be obtained through the Quick Response (QR) Code. Copies are for personal use only and may not be reproduced without permission of the authors.



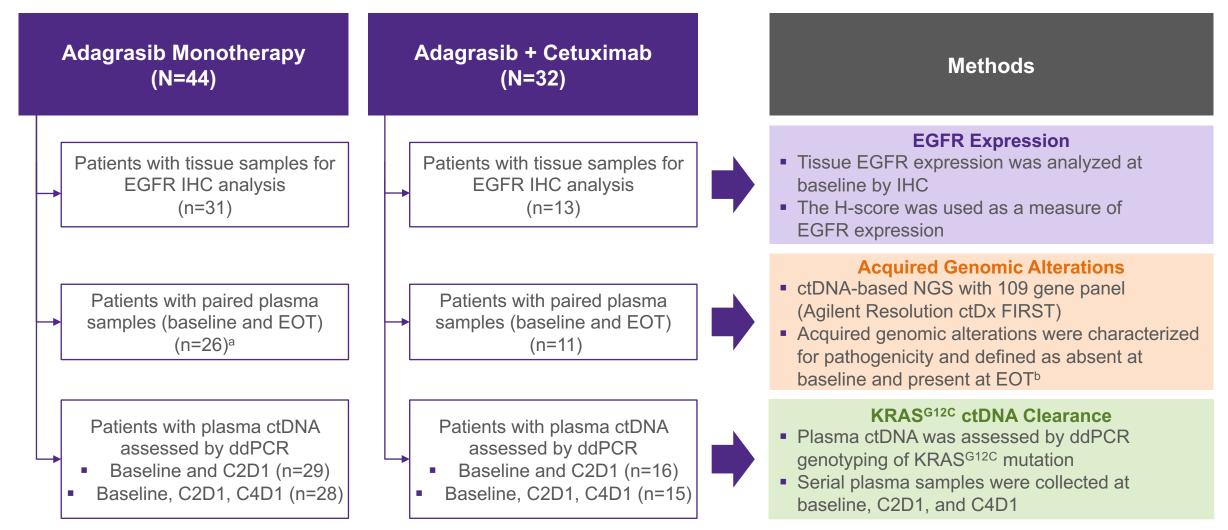
Disclosures

- Research grants: Arcus Biosciences, Astellas, Codiak Biosciences, CytomX, Eisai, Gritstone Oncology, HiberCell, Immune-Onc Therapeutics, OncXerna Therapeutics, Surface Oncology, SQZ Biotechnologies, TransThera Sciences, ZielBio, Agenus, BeiGene, BioNTech, Bristol Myers Squibb, Compass Therapeutics, Gilead, Novartis, Panbela Therapeutics, Revolution Medicines, Translational Genomics, 1200 Pharma
- Advisory role: AstraZeneca, Bayer, Novartis, SeaGen, CytomX, Daiichi Sankyo, Ipsen, Pfizer, EMD Serono

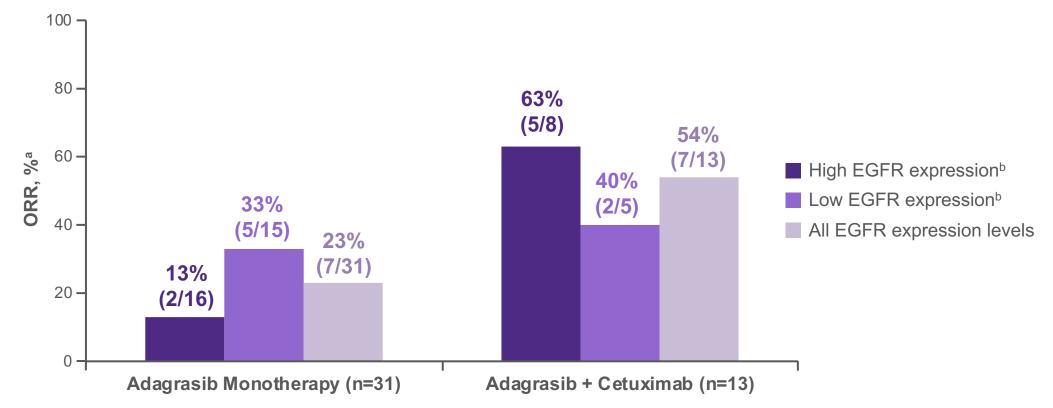

Adagrasib (MRTX849) is a Differentiated KRAS^{G12C} Inhibitor

- Adagrasib, a covalent KRAS^{G12C} inhibitor, was selected for favorable properties, including a long half-life (23 hours), dose-dependent PK, and CNS penetration^{1–3}
- In Phase 1/2 cohorts of the KRYSTAL-1 study, adagrasib with or without cetuximab has shown promising clinical activity in heavily pretreated patients with KRAS^{G12C}-mutated CRC⁴
- Adagrasib has received:
 - FDA approval for patients with previously treated metastatic KRAS^{G12C}-mutated NSCLC⁵
 - BTD in combination with cetuximab in patients with previously treated advanced KRAS^{G12C}-mutated CRC⁶
 - NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) recommendation for use with cetuximab or panitumumab in patients with previously treated advanced KRAS^{G12C}-mutated CRC^{7,8}
- Acquired resistance has been previously observed in CRC following KRAS^{G12C} inhibition with or without EGFR inhibition, and ctDNA analyses have been used to explore these resistance mechanisms^{9,10}

EGFR signaling is implicated in feedback reactivation, providing rationale for a co-targeting strategy in KRAS-mutated CRC¹¹


KRYSTAL-1 (849-001) Phase 1b/2 CRC Cohorts Study Design

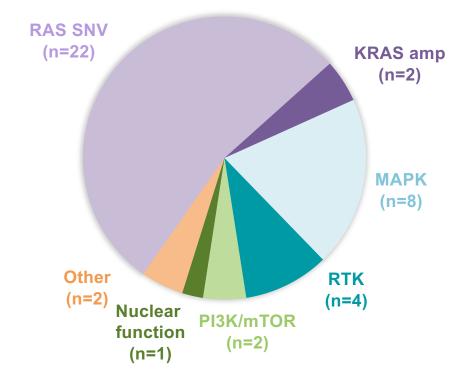
Here we report exploratory analyses of potential mechanisms of acquired resistance to adagrasib, as well as clinical response according to baseline tumor IHC-assessed EGFR expression and plasma ctDNA clearance


^aKRAS^{G12C} mutation detected in tumor tissue and/or ctDNA per protocol; ^bCapsule, fasted; ^cCetuximab dosing, 400 mg/m² followed by 250 mg/m² QW, or 500 mg/m² Q2W IHC, immunohistochemistry ClinicalTrials.gov. NCT03785249

Patients and Methods

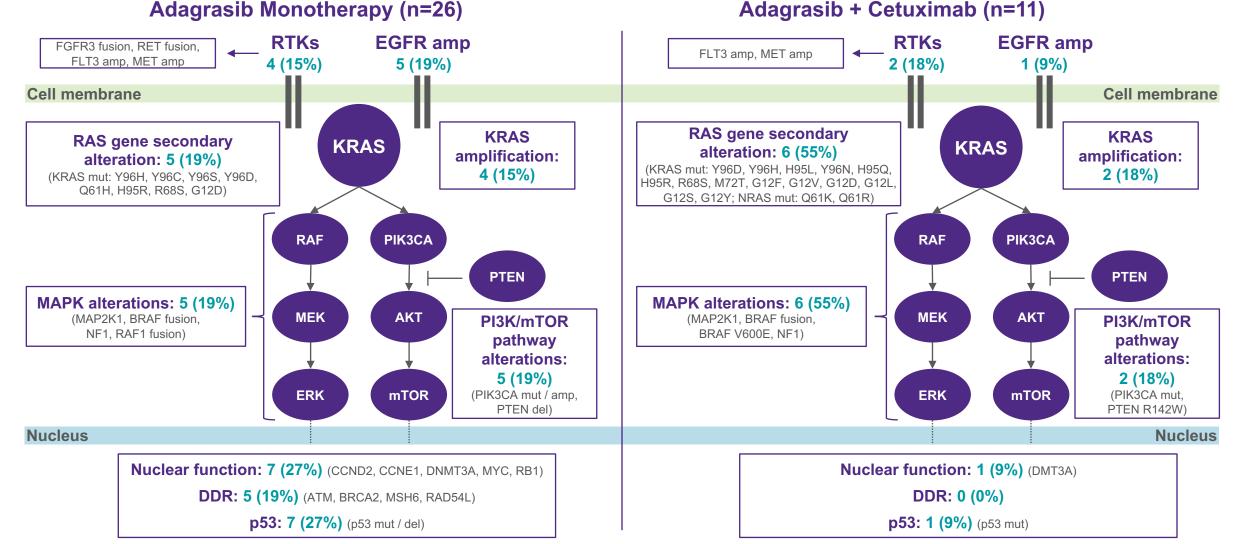
^aIncluding four patients who subsequently crossed over to adagrasib + cetuximab; ^bAll clearly inactivating mutations (e.g. frameshift, nonsense, splice site) for known tumor suppressor genes were included. Well-established, annotated, clearly recurrent mutations were confirmed by COSMIC. Point mutations that are potential variants of unknown significance required evidence of recurrence in COSMIC (≥5 instances) plus structural impact assessment by SIFT and mutation assessor C2D1, cycle 2 day 1; C4D1, cycle 4 day 1; ddPCR, droplet digital polymerase chain reaction; EOT, end of therapy; NGS, next-generation sequencing

Exploratory Analysis: ORR by EGFR Expression at Baseline in Patients With KRAS^{G12C}-Mutated CRC


- Responses were observed regardless of EGFR expression (all PRs)
- In the monotherapy cohort, ORR was higher in patients with low EGFR expression compared with patients who had high EGFR expression
- ORR was higher in patients with high EGFR expression compared with those who had low EGFR expression in the combination cohort, although this sample size was very limited

Exploratory Analysis: ctDNA Analysis of Acquired Genomic Alterations by Signaling Pathway in Patients With KRAS^{G12C}-Mutated CRC

- Acquired pathogenic genomic alterations were detected in 69% (18/26) of patients treated with adagrasib monotherapy
- A total of 66 pathogenic alterations were detected;
 32% of these occurred in the RAS/MAPK pathway

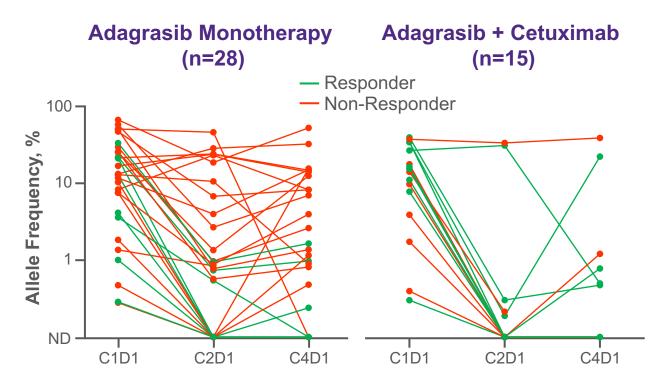

Adagrasib + Cetuximab^b

- Acquired pathogenic genomic alterations were detected in 73% (8/11) of patients treated with adagrasib + cetuximab
- A total of 41 pathogenic alterations were detected;
 78% of these occurred in the RAS/MAPK pathway

^aAcquired genomic alterations with adagrasib monotherapy included RAS: KRAS; MAPK: BRAF, MAP2K1, NF1, RAF1; RTK: EGFR, FGFR3, FLT3, MET, RET; PI3K/mTOR: PIK3CA, PTEN; nuclear function: CCND2, CCNE1, DNMT3A, MYC, RB1; DDR: ATM, BRCA2, MSH6, RAD54L; other pathogenic: FBXW7, JAK2, TP53. ^bAcquired genomic alterations with adagrasib + cetuximab included RAS: KRAS, NRAS; MAPK: BRAF, MAP2K1, NF1; RTK: EGFR, MET, FLT3; PI3K/mTOR: PIK3CA, PTEN; nuclear function: DNMT3A; other pathogenic: FBXW7, TP53

Exploratory Analysis: Acquired RAS/MAPK Pathway Genomic Alterations Were More Common With Combination Than Monotherapy

Exploratory Analysis: ctDNA Analysis of Acquired Genomic Alterations in the RTK/MAPK/PI3K Pathway in Patients With KRAS^{G12C}-Mutated CRC


Adagrasib Monotherapy (n=18/26)^a

Adagrasib + Cetuximab (n=8/11)

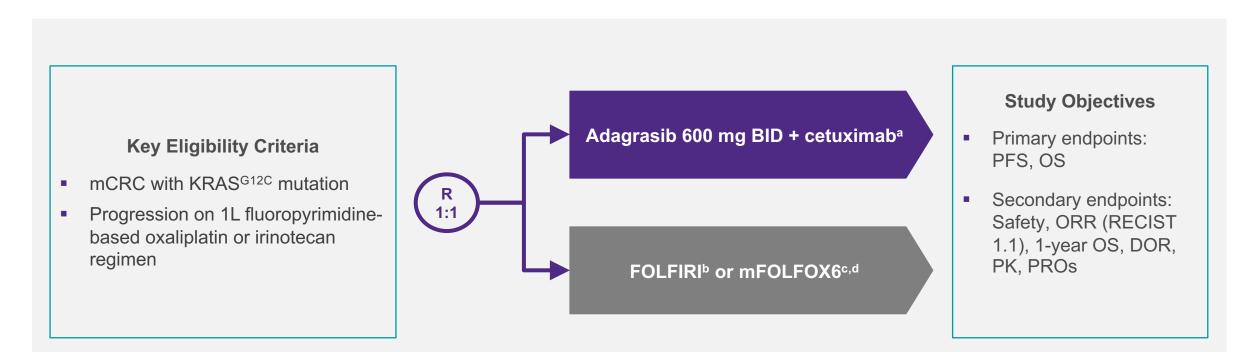
		AS	S RTK/RAS/MAPK/PI3K/p53								RAS	RTK/RAS/MAPK/PI3K/p53														
Patient ^a	CNA	SNV	EGFR	FGFR3	BRAF	MAP2K1	MET	MYC	NF1	PIK3CA	PTEN	RAF1	RET	p53	Patient	CNA	SNV	EGFR	NRAS	BRAF	MAP2K1	MET	NF1	РІКЗСА	PTEN	p53
1															1					V600E						
2															2											
3															3											
4															4											
5															5											
6															6											
7															7											
8															8											
9																										
10																										
11																										
12																		Сору	Num	ber A	lterati	ion (C	NA)			
13																		Sinale	e Nuc	leotio	de Var	iant (SNV)			
14																		_				(,			
15																		Fusio	n							
16																		Deleti	on							

• Multiple diverse genomic alterations were observed in individual patients with KRAS^{G12C}-mutated CRC treated with adagrasib ± cetuximab

Exploratory Analysis: ORR by MAFC at C4D1 in Patients With KRAS^{G12C}-Mutated CRC

ORR, n/N (%)ª	Adagrasib Monotherapy (n=28)	Adagrasib + Cetuximab (n=15)					
MAFC ≥90% by C4D1	7/15 (47)	8/12 (67)					
MAFC <90% by C4D1	1/13 (8)	1/3 (33)					
All patients analyzed for MAFC	8/28 (29)	9/15 (60)					

- MAFC ≥90% by C4D1 was observed more commonly in patients treated with adagrasib + cetuximab (12/15; 80%) compared with those treated with adagrasib monotherapy (15/28; 54%)
- In patients with MAFC ≥90%, ORR was 47% in the monotherapy cohort and 67% in the combination cohort


Conclusions

- Acknowledging the limitations of these retrospective exploratory analyses, including the small sample size and incomplete sample collection, initial data show that:
 - Partial responses were observed in patients regardless of EGFR expression
 - Diverse acquired genomic alterations were observed in patients treated with adagrasib monotherapy or in combination with cetuximab, in line with previous reports of acquired KRAS mutations and acquired RTK/RAS/MAPK/PI3K pathway alterations following KRAS^{G12C} inhibition with or without EGFR inhibition in CRC^{9,10}
 - KRAS^{G12C} ctDNA clearance of \geq 90% was associated with higher ORR
- Further analyses are required to confirm these findings in larger randomized trials

KRYSTAL-10 (849-010) Global, Phase 3, Randomized, Open-Label Trial of 2L Adagrasib + Cetuximab vs Chemotherapy in mCRC With KRAS^{G12C} Mutation

Phase 3 CRC Combination vs Chemotherapy^{11,12}

^aDosing: cetuximab, 500 mg/m² Q2W; ^bFOLFIRI Q2W (irinotecan, 180 mg/m², 5-FU/LV with fluorouracil given as a 400 mg/m² IV bolus followed by a 2400 mg/m² dose given as a continuous infusion over 46–48 hours); ^cmFOLFOX6 Q2W (oxaliplatin, 85 mg/m², 5-FU/LV, with fluorouracil given as a 400 mg/m² IV bolus followed by a 2400 mg/m² dose given as continuous infusion over 46–48 hours); ^dA VEGF/VEGFR inhibitor may be given per investigator discretion ClinicalTrials.gov NCT04793958

Acknowledgments

- The patients and their families who made this trial possible
- The clinical study teams and investigators for their work and contributions
- Wenjing Yang from Mirati Therapeutics, Inc. for their support in data delivery and analysis
- This study is supported by Mirati Therapeutics, Inc.
- All authors contributed to and approved this presentation; third party medical writing and editorial assistance were provided by Flaminia Fenoaltea, MSc, of Ashfield MedComms, an Inizio company, funded by Mirati Therapeutics, Inc.

Investigators

Daniel Anderson

Metro-Minnesota Community Oncology Research Consortium

Minal Barve

Mary Crowley Cancer Research

Lyudmila Bazhenova Moores Cancer Center, University of California San Diego

Tanios Bekaii-Saab Mayo Clinic

David Berz Beverly Hills Cancer Center

Patrick Cobb

Sisters of Charity of Leavenworth Health St. Mary's

Marcia Cruz-Correa

Pan American Center for Oncology Trials

Muhammad Furqan

University of Iowa

Shirish M. Gadgeel Henry Ford Cancer Institute / Henry Ford Health System

Yousuf Gaffar Maryland Oncology Hematology

Navid Hafez Yale Cancer Center

David Hakimian Illinois Cancer Specialists

Rebecca S. Heist Massachusetts General Hospital

Pasi A. Jänne Dana-Farber Cancer Institute

Melissa L. Johnson Sarah Cannon Research Institute, Tennessee Oncology

Han Koh Kaiser Permanente

Konstantinos Leventakos Mayo Clinic Yanyan Lou Mayo Clinic

Suresh Nair Lehigh Valley Physician Group

Misako Nagasaka Karmanos Cancer Institute

Gregg Newman Ridley-Tree Cancer Center

Sai-Hong Ignatius Ou University of California, Irvine, Chao Family Comprehensive Cancer Center

Jose M. Pacheco University of Colorado Anschutz Medical Campus

Kyriakos P. Papadopoulos START Center for Cancer Care

Muhammad Riaz University of Cincinnati Health Barrett Cancer Center Donald Richards Texas Oncology

Gregory J. Riely Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College

Richard Rosenberg Arizona Oncology

Joshua Sabari New York University Langone Health, New York University Perlmutter Cancer Center

Alexander I. Spira Virginia Cancer Specialists, US Oncology Research

Nataliya V. Uboha University of Wisconsin Carbone Cancer Center

Jared Weiss Lineberger Comprehensive Cancer Center, University of North Carolina

Ralph Zinner University of Kentucky