KRYS TAL-1: Updated Safety and Efficacy Data With Adagrasib (MRTX849) in NSCLC With KRASG12C Mutation From a Phase 1/2 Study

Pasi A. Jänne1; Igor I. Rybkin2; Alexander Spira3; Gregory J. Riely4; Kyriakos P. Papadopoulos5; Joshua Sabari6; Melissa L. Johnson7; Rebecca S. Heist8; Lyudmila Bazhenova9; Minal Barve10; Jose M. Pacheco11; Tician A. Leal12; Karen Velastegui13; Cornelius Cilliers13; Peter Olson13; James G. Christensen13; Thian Kheoh13; Richard C. Chao13; Sai-Hong Ignatius Ou14

1Dana-Farber Cancer Institute, Boston, Massachusetts, USA. 2Henry Ford Cancer Institute, Detroit, Michigan. 3Virginia Cancer Specialists, Fairfax, Virginia, USA; US Oncology Research, The Woodlands, Texas, USA. 4Thoracic Oncology Service, Division of Solid Tumor, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York, USA. 5START Center for Cancer Care, San Antonio, Texas, USA. 6Department of Medical Oncology, New York University Langone Health, New York, NY; New York University Perlmutter Cancer Center, New York, New York, USA. 7Sarah Cannon Research Institute Tennessee Oncology, Nashville, Tennessee, USA. 8Massachusetts General Hospital, Boston, Massachusetts. 9Moores Cancer Center, University of California San Diego, La Jolla, California, USA. 10Mary Crowley Cancer Center, Dallas, Texas, USA. 11Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. 12University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA. 13Mirati Therapeutics, Inc., San Diego, California. 14University of California, Irvine, Chao Family Comprehensive Cancer Center, Orange, California, USA.
Disclosures

• Sponsored Research:
 - Mirati Therapeutics, Inc; Boehringer-Ingelheim; Eli Lilly and Company; Takeda Oncology; Puma Biotechnology; Astellas Pharmaceuticals; AstraZeneca; Daiichi Sankyo; Revolution Medicines

• Consulting Fees:
 - Mirati Therapeutics, Inc; Boehringer-Ingelheim; Pfizer; Roche/Genentech; Chugai Pharmaceuticals; Eli Lilly and Company; Araxes Pharma; Ignyta, Takeda Oncology; Voronoi; Novartis; SFJ Pharmaceuticals; Biocartis; LOXO Oncology; Sanofi; Transcenta AstraZeneca; Daiichi Sankyo

• Stockholder in:
 - Gatekeeper Pharmaceuticals; LOXO Oncology

• Other:
 - Post-marketing royalties from DFCI-owned IP on EGFR mutations (licensed to LabCorp)
KRASG12C mutations act as oncogenic drivers and occur in approximately 14% of NSCLC (adenocarcinoma), 3-4% of CRC, and 1-2% of several other cancers1-3.

The KRAS protein cycles between GTP-On and GDP-Off states and has a protein resynthesis half-life of ~24 h4,5.

Adagrasib is a covalent inhibitor of KRASG12C that irreversibly and selectively binds KRASG12C in its inactive, GDP-bound state6.

Adagrasib was optimized for desired properties of a KRASG12C inhibitor:
- Potent covalent inhibitor of KRASG12C (cellular IC50: ~5 nM)
- High selectivity (>1000X) for the mutant KRASG12C protein vs wild-type KRAS
- Favorable PK properties, including oral bioavailability, long half-life (~24 h), and extensive tissue distribution

Hypothesis: Maintaining continuous exposure of adagrasib above a target threshold enables inhibition of KRAS-dependent signaling for the complete dose interval and maximizes depth and duration of antitumor activity.

KRYS0TAL-1 (849-001) Study Design

Key Eligibility Criteria

Up to n=391

- Solid tumor with KRAS^{G12C} mutation
- Unresectable or metastatic disease
- Progression on or following treatment with a PD-1/L1 inhibitor following or in combination with chemotherapy (NSCLC)^a
- Treated and/or stable brain metastases^b

Phase 1 Dose Escalation
- 150 mg QD
- 300 mg QD
- 600 mg QD
- 1200 mg QD
- 600 mg BID

Expansion

Phase 1B Dose Expansion and Combination
- **Adagrasib monotherapy NSCLC**
 - n=18 (Phase 1/1b)
 - Adagrasib + pembrolizumab in NSCLC
 - Adagrasib + afatinib in NSCLC
 - Adagrasib + cetuximab in CRC

Phase 2 Monotherapy Treatment

- NSCLC^c n=61
- CRC
- Other solid tumors

Phase 1 Endpoints
- Primary: Safety, MTD, PK, RP2D
- Secondary: Objective Response (RECIST 1.1), DOR, PFS, OS

Phase 2 Endpoints
- Primary: ORR (RECIST 1.1)
- Secondary: Safety

^aApplies to the majority of NSCLC cohorts. ^bMost cohorts allow patients with brain metastases if adequately treated and stable; additional phase 1/1b cohort allows limited brain metastases.

^cPrimary NSCLC cohort eligibility based on a tissue test; KRAS^{G12C} testing for entry was performed locally or centrally using a sponsor pre-approved test. ClinicalTrials.gov. NCT03785249.

- Previously reported data from Phase 1 demonstrated clinical activity with adagrasib (MRTX849) in patients with pretreated KRAS^{G12C} NSCLC and CRC
- 600 mg BID was chosen as the RP2D
- Here we report data for 79 patients evaluating adagrasib 600 mg BID in patients with previously treated NSCLC in Phase 1/1b (n=18, median follow-up, 9.6 mo) and Phase 2 (n=61); pooled (n=79) median follow-up, 3.6 mo
- Data cut-off date: 30 August 2020

Presented at the 32nd EORTC-NCI-AACR Symposium, October 24-25, 2020

4
Patient Demographics and Baseline Characteristics: NSCLC

<table>
<thead>
<tr>
<th></th>
<th>Phase 1/1b 600 mg BID (n=18)</th>
<th>Phase 1/1b and 2 600 mg BID (n=79)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, y (range)</td>
<td>65 (40-76)</td>
<td>65 (25-85)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>11 (61%)</td>
<td>45 (57%)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>15 (83%)</td>
<td>67 (85%)</td>
</tr>
<tr>
<td>Black</td>
<td>3 (17%)</td>
<td>5 (6%)</td>
</tr>
<tr>
<td>Asian</td>
<td>0 (0%)</td>
<td>5 (6%)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8 (44%)</td>
<td>17 (22%)</td>
</tr>
<tr>
<td>1</td>
<td>10 (56%)</td>
<td>62 (78%)</td>
</tr>
<tr>
<td>Current/former smokers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 (89%)</td>
<td>75 (95%)</td>
</tr>
<tr>
<td>Nonsquamous histology, n (%)</td>
<td></td>
<td>76 (96%)</td>
</tr>
<tr>
<td>Prior lines of anticancer therapy(^a), median (range)</td>
<td>3 (1-9)</td>
<td>2 (1-9)</td>
</tr>
<tr>
<td>Prior anti-PD-1/L1 inhibitor, n (%)</td>
<td>16 (89%)</td>
<td>73 (92%)</td>
</tr>
</tbody>
</table>

\(^a\)Phase 2 patients with NSCLC received prior treatment with platinum regimens. Data as of 30 August 2020. Pooled includes NSCLC Phase 1/1b and Phase 2 600 mg BID.
Adagrasib at 600 mg BID Exhibits Favorable PK Properties; Exposure Maintained Above Target Plasma Thresholds Throughout Full Dosing Interval

PK Properties Summary:
- \(C_{\text{ave}} \) of 2.63 \(\mu \)g/mL is 2-5-fold above target threshold for full dose interval
- \(C_{\text{ave}} \) PK parameter best matched to nonclinical antitumor activity
- Low peak to trough ratio at steady state (~1.27)
- \(t_{1/2} \) ~ 24 hours
- Extensive volume of distribution predicted based on nonclinical studies

Data as of 18 March 2020.

\(a \) Includes 14 NSCLC, 1 CRC, and 2 appendiceal patients from Phase 1/1b.

Presented at the 32nd EORTC-NCI-AACR Symposium, October 24-25, 2020.
Incidence of Treatment-Related Adverse Events

<table>
<thead>
<tr>
<th>TRAEs<sup>b,c</sup>, %</th>
<th>Any grade</th>
<th>Grades 3-4</th>
<th>Grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any TRAEs</td>
<td>85%</td>
<td>30%</td>
<td>2%</td>
</tr>
<tr>
<td>Most frequent TRAEs<sup>a,d</sup>, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>54%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>51%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>35%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>32%</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>Increased ALT</td>
<td>20%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>Increased AST</td>
<td>17%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>Increased blood creatinine</td>
<td>15%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>15%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>QT prolongation</td>
<td>14%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Anemia</td>
<td>13%</td>
<td>2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Grade 5 TRAEs included pneumonitis in a patient with recurrent pneumonitis (n=1) and cardiac failure (n=1)
- 7.3% of TRAEs led to discontinuation

^aIncludes patients pooled from Phase 1/1b and Phase 2 NSCLC (n=79), and CRC and Phase 2 other tumor cohorts (n=31).
^bIncludes events reported between first dose and 30 August 2020.
^cThe most common treatment-related SAEs reported (2 patients each) reported were diarrhea (grade 1, grade 2) and hyponatremia (both grade 3).
^dOccurred in ≥10%.

Data as of 30 August 2020.
Adagrasib in Patients With NSCLC: ORR in Pooled Dataset

<table>
<thead>
<tr>
<th>Efficacy Outcome^a, n (%)</th>
<th>Phase 1/1b, NSCLC 600 mg BID (n=14)</th>
<th>Phase 1/1b and 2, NSCLC 600 mg BID (n=51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Response Rate</td>
<td>6 (43%)</td>
<td>23 (45%)^b</td>
</tr>
<tr>
<td>Best Overall Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Response (CR)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Partial Response (PR)</td>
<td>6 (43%)</td>
<td>23 (45%)</td>
</tr>
<tr>
<td>Stable Disease (SD)</td>
<td>8 (57%)</td>
<td>26 (51%)</td>
</tr>
<tr>
<td>Progressive Disease (PD)</td>
<td>0 (0%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Not Evaluable (NE)</td>
<td>0 (0%)</td>
<td>1 (2%)^c</td>
</tr>
<tr>
<td>Disease control</td>
<td>14 (100%)</td>
<td>49 (96%)</td>
</tr>
</tbody>
</table>

^aBased on investigator assessment of the clinically evaluable patients (measurable disease with ≥1 on-study scan); 14/18 patients (Phase 1/1b) and 51/79 patients (Phase 1/1b and 2 pooled) met these criteria. ^bAt the time of the 30 August 2020 data cut off, 5 patients had unconfirmed PRs. All 5 were confirmed by scans that were performed after the 30 August 2020 data cut off. ^cOne patient had tumor reimaging too early for response assessment.

Data as of 30 August 2020. Pooled includes NSCLC Phase 1/1b and Phase 2 600 mg BID.
Adagrasib 600 mg BID in Patients With NSCLC: Best Tumor Change From Baseline

- Clinical benefit (DCR) observed in 96.1% (49/51) of patients

4Two timepoint assessments of CR were separated by recurrent disease associated with treatment interruption due to hypoxia; this patient remains on treatment and in two consecutive scans (1 after August 30 data cutoff) demonstrated 100% tumor regression in target and non-target lesions after resuming treatment.

Data as of 30 August 2020. Pooled includes NSCLC Phase 1/1b and Phase 2 600 mg BID.
Adagrasib 600 mg BID in Patients With NSCLC: Treatment Duration and Change in Tumor Burden

Data as of 30 August 2020

- Median follow-up, 9.6 mo
- 5 of the 6 responders remain on treatment; treatment ongoing >11 mo for the majority of patients with responses (4/6)
- Median time to response, 1.5 mo

Presented at the 32nd EORTC-NCI-AACR Symposium, October 24-25, 2020
Duration of Treatment in Patients With NSCLC Treated With Adagrasib 600 mg BID in Pooled Dataset

- Median follow-up, 3.6 mo
- Median time to response, 1.5 mo
- 83% (19/23) of responders have not progressed and remain on study
- 65% (33/51) of patients remain on treatment

Data as of 30 August 2020. Pooled includes NSCLC Phase 1/1b and Phase 2 600 mg BID.

Presented at the 32nd EORTC-NCI-AACR Symposium, October 24-25, 2020
Adagrasib Penetrates the Brain/CSF and Results in Tumor Regression in a Preclinical Modela

- Adagrasib demonstrates dose-dependent brain and CSF exposure in preclinical studies.
- A single 100 mg/kg oral dose in mice results in brain concentrations exceeding the cellular IC\textsubscript{50} of adagrasib.
- Plasma levels achieved at 100 mg/kg BID in mice are comparable to levels achieved at a 600 mg BID human dose and results in near complete tumor regression in LU99Luc KRASG12C tumors.

aData on file, Mirati Therapeutics, Inc.

Mean Plasma and Brain Concentrations of Adagrasib After a Single 100 mg/kg Oral Dose in Mice

- Mean plasma
- Mean brain

Cellular IC\textsubscript{50} = 1000 ng/mL

K\textsubscript{p,uu} = 0.4 (1 h)

LU99Luc KRASG12C Brain Metastases Model

- **Vehicle**: No significant change in tumor size.
- **Adagrasib 100 mg/kg BID**: Near complete tumor regression observed.

Presented at the 32nd EORTC-NCI-AACR Symposium, October 24-25, 2020.
Patient Case: Patient With Brain Metastasis and KRAS^{G12C} Mutation

Baseline

Adagrasib 600 mg BID, Cycle 7
PR, (-67%)

- 77-year-old female previous smoker
- NSCLC diagnosed, April 2019
- Only mutation identified by NGS panel: KRAS^{G12C}
- Treatment history
 - Carboplatin, pemetrexed, pembrolizumab, May-July 2019
 - Pemetrexed maintenance, August-December 2019
 - Left frontal brain met radiation, November 2019
 - Pembrolizumab maintenance, January-February 2020
 - Pemetrexed, March 2020
 - Left and right cerebellar radiation, March 2020
- Patient started adagrasib 600 mg BID, May 2020
- Metastases were in the lung and liver and an unirradiated brain lesion in the right middle frontal gyrus
- TRAEs
 - Grade 1 nausea, vomiting, diarrhea, dysphagia, anemia, rash, and thigh discomfort
- Currently in cycle 7

Data as of 25 September 2020.
Patient Case: Response in NSCLC Harboring KRASG12C and STK11 Co-Mutations

Baseline

Adagrasib 600 mg BID, Cycle 6
PR (-56%)

Adagrasib 600 mg BID, Cycle 10
PR (-59%)

• 53-year-old male former smoker; NSCLC diagnosed, December 2018
• KRASG12C and STK11N41* mutations detected by NGS
• Treatment history
 – Radiotherapy to brain, December 2018
 – Carboplatin, pemetrexed, pembrolizumab, January-April 2019 with BOR of SD
 – Radiotherapy to brain, March-April 2019
 – Pemetrexed with pembrolizumab as continuation maintenance through September 2019
 – LMB-100 (investigational agent) with pembrolizumab, October-December 2019
• Patient started adagrasib 600 mg BID in February 2020
• No TRAEs
• Patient remains on study

Data as of 05 October 2020.
Preliminary Exploratory Correlative Analysis of Co-Mutations Including STK11 With KRAS\(^{G_{12C}}\) and Response Rate in Patients with NSCLC Treated with Adagrasib

Response Rate, %

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Response Rate, %</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>STK11</td>
<td>64%</td>
<td>9/14</td>
</tr>
<tr>
<td>KEAP1</td>
<td>33%</td>
<td>10/30</td>
</tr>
<tr>
<td>TP53</td>
<td>36%</td>
<td>5/14</td>
</tr>
<tr>
<td>KRAS(^{G_{12C}}) (all patients)</td>
<td>48%</td>
<td>14/29</td>
</tr>
<tr>
<td></td>
<td>45%</td>
<td>23/51</td>
</tr>
<tr>
<td></td>
<td>38%</td>
<td>9/24</td>
</tr>
<tr>
<td></td>
<td>33%</td>
<td>11/23</td>
</tr>
<tr>
<td></td>
<td>36%</td>
<td>10/30</td>
</tr>
</tbody>
</table>

Best Tumor Change From Baseline for PatientsHarboring KRAS\(^{G_{12C}}\) and STK11 Co-mutations

- Baseline NGS reports reviewed for exploratory correlative analysis for all NSCLC patients with available mutation data\(^a\)
- **64% ORR** in patients with tumors harboring STK11 and KRAS\(^{G_{12C}}\) mutations
- No apparent trend with KEAP1, TP53, or other common mutations and response rate

\(^a\)Analysis includes key mutations detected at baseline in tumor and/or plasma that commonly occur with KRAS\(^{G_{12C}}\). Mutations included as positive include, nonsense, frameshift, splice site, and recurrent mutations predicted to have deleterious impact, and excluded VUS.

Data as of 30 August 2020. Based on unaudited data.

Presented at the 32nd EORTC-NCI-AACR Symposium, October 24-25, 2020
Conclusions

• Adagrasib is a KRASG12C-selective covalent inhibitor with a long half-life, and extensive predicted target coverage throughout the dosing interval
• Adagrasib is well tolerated
• Adagrasib provides durable benefit to patients with NSCLC harboring KRASG12C mutations
 • Durable responses were observed
 • Broad disease control rate was observed
• In a preliminary exploratory genomic analysis, ORR was higher in patients with tumors harboring KRASG12C and STK11 co-mutations
• Pembrolizumab combination (NSCLC) arm has cleared the DLT observation period and enrollment in Phase 1b expansion at full dose of each agent is ongoing
• Combination clinical trials are enrolling or planned in NSCLC with afatinib, TNO155 (SHP2-inhibitor), and palbociclib

Responses observed in CRC (n=3/18; 17%), and in patients with pancreatic, ovarian, and endometrial cancers, and cholangiocarcinoma

See Johnson ML et al., abstract LBA-04.

aClinicalTrials.gov. NCT03785249. bClinicalTrials.gov. NCT04330664.
Acknowledgements

• The patients and their families who make this trial possible
• The clinical study teams for their work and contributions
• This study is supported by Mirati Therapeutics, Inc.
• All authors contributed to and approved this presentation; writing and editorial assistance were provided by Robin Serody of Axiom Healthcare Strategies, funded by Mirati Therapeutics, Inc.
Investigators

Harshad Amin
Boca Raton Clinical Research
Global USA

Daniel Anderson
Metro-Minnesota Community Oncology Research Consortium

Minal Barve
Mary Crowley Cancer Center

Bruno R. Bastos
Miami Cancer Institute and Baptist Health of South Florida

Lyudmila Bazhenova
Moore’s Cancer Center, University of California San Diego

Tanios Bekaii-Saab
Mayo Clinic

David Berz
Beverly Hills Cancer Center

Alberto Bessudo
California Cancer Associates for Research and Excellence

Alejandro Calvo
Kettering Cancer Center

Patrick Cobb
Sisters of Charity of Leavenworth Health St. Mary’s

Mike Cusnir
Mount Sinai Comprehensive Cancer Center

Keith Eaton
Seattle Cancer Care Alliance

Yousuf Gaffar
Maryland Oncology Hematology

Navid Hafez
Yale Cancer Center

David Hakimian
Illinois Cancer Specialists

Rebecca S. Heist
Massachusetts General Hospital

Pasi A Jänne
Dana-Farber Cancer Institute

Melissa L. Johnson
Sarah Cannon Research Institute Tennessee Oncology

Han Koh
Kaiser Permanente

Scott Kruger
Virginia Oncology Associates

Timothy Larson
Minnesota Oncology

Ticiana A. Leal
University of Wisconsin Carbone Cancer Center

Konstantinos Leventakos
Mayo Clinic

Yanyan Lou
Mayo Clinic

Steven McCune
Northwest Georgia Oncology Centers

Jamal Misleh
Medical Oncology Hematology Consultants

Suresh Nair
Lehigh Valley Physician Group

Sujatha Nallapareddy
Rocky Mountain Cancer Center

Marcelo Negro
MD Anderson Cancer Center

Gregg Newman
Ridley-Tree Cancer Center

Sai-Hong Ignatius Ou
University of California, Irvine, Chao Family Comprehensive Cancer Center

Rami Oweras
Woodlands Medical Specialists

Jose M. Pacheco
University of Colorado Anschutz Medical Campus

Kyriakos P. Papadopoulos
START Center for Cancer Care

David Park
Virginia K. Crosson Cancer Center

Scott Paulson
Texas Oncology, USOR

Nathan Pennell
Cleveland Clinic Lerner College Of Medicine

Muhammad Riaz
University of Cincinnati Health Barrett Cancer Center

Donald Richards
Texas Oncology, USOR

Gregory J. Riely
MSKCC, Weill Cornell Medical College

Francisco Robert
University of Alabama at Birmingham School of Medicine

Richard Rosenberg
Arizona Oncology

Peter Rubin
MaineHealth Cancer Care

Robert Ruxer
Texas Oncology

Igor I. Rybkin
Henry Ford Cancer Institute

Joshua Sabari
New York University Langone Health, New York University Perlmutter Cancer Center

Alexander I. Spira
Virginia Cancer Specialists, US Oncology Research

Caesar Tin-U
Texas Oncology

Anthony Van Ho
Compass Oncology

Jared Weiss
Lineberger Comprehensive Cancer Center, University of North Carolina

John Wrangle
Medical University of South Carolina

Edwin Yau
Roswell Park Comprehensive Cancer Center

Jeffrey Yorio
Texas Oncology

Jun Zhang
University of Kansas Medical Center

Presented at the 32nd EORTC-NCI-AACR Symposium, October 24-25, 2020
Abbreviations

BID = twice daily
C_{ave} = average drug plasma concentration
CBR = clinical benefit rate
CRC = colorectal cancer
CSF = cerebrospinal fluid
DCR = disease control rate
DLT = dose limiting toxicity
DOR = duration of response
ECOG = Eastern Cooperative Oncology Group
MTD = maximum tolerated dose
nM = nanomolar
NE = not evaluable
NGS = next-generation sequencing
NSCLC = non–small-cell lung cancer

ORR = objective response rate
OS = overall survival
PD = progressive disease
PFS = progression-free survival
PK = pharmacokinetics
PR = partial response
PS = performance status
QD = once daily
RP2D = recommended Phase 2 dose
SAE = serious adverse event
SD = stable disease
TRAE = treatment-related adverse event
uPR = unconfirmed partial response
VUS = variant of unknown significance