Drug-Anchored *in vitro* and *in vivo* CRISPR Screens to Identify Targetable Vulnerabilities and Modifiers of Response to MRTX849 in KRASG12C-Mutant Models

Lars Engstrom – Principal Scientist
Mirati Therapeutics – San Diego, CA
Lars Engstrom is an employee and stock holder of Mirati Therapeutics
MRTX849 is a Clinically Active, Irreversible, KRASG12C Inhibitor

MRTX849 Covalently Inhibits KRAS G12C

1. **Targeting KRAS**
 - KRAS G12C Active
 - KRAS G12C Inactive
 - GTP
 - GDP
 - Cysteine-12
 - MRTX849
 - Picomolar Affinity for GTP

2. **KRAS G12C is irreversibly locked in the inactive state**
 - Cysteine-12 is adjacent to a shallow Switch II pocket
 - MRTX849 covalently binds to the cysteine and an induced Switch II pocket

3. **KRAS G12C is irreversibly locked in the inactive state**
 - KRAS G12C Inactive

Tumor cell death

AACR-NCI-EORTC 10/28/2019

600 mg BID Dose Patients: Best Tumor Response*

<table>
<thead>
<tr>
<th>Condition</th>
<th>Maximum % Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC (N=2)</td>
<td>-47% PR1</td>
</tr>
<tr>
<td>NSCLC (N=5)</td>
<td>-36% PR1</td>
</tr>
<tr>
<td>NSCLC (N=5)</td>
<td>-43% PR6</td>
</tr>
</tbody>
</table>

* Based on local radiographic scans every 6 weeks using RECIST 1.1 criteria
1 Confirmed response (1st scan: -37%, 2nd scan: -47%)
2 Response yet to be confirmed (on study but only 1 scan)
6 Patient had confirmed PR post data cut-off (1st scan: -33%, 2nd scan: -43%)

Data cut-off date: 11-Oct-2019

Based on the local radiographic scans every 6 weeks using RECIST 1.1 criteria, the 600 mg BID dose of MRTX849 has shown promising results in patients with KRASG12C mutations. The best tumor response is observed in CRC patients, with a confirmed response rate of 47% (1st scan: -37%, 2nd scan: -47%). The response is yet to be confirmed in some NSCLC patients, and one patient had confirmed PR post data cut-off. The study is ongoing with data cut-off date set for 11-Oct-2019.
MRTX849 Demonstrates Broad Spectrum Tumor Regression in KRASG12C Nonclinical Tumor Growth Models

CDX and PDX models were treated with MRTX849 @ 100mg/kg PO, QD in all models shown. % change from baseline control was calculated on ~ day 22 post initiation of dosing.
MRTX849 Demonstrates Broad Spectrum Tumor Regression in KRASG12C Nonclinical Tumor Growth Models

CDX and PDX models were treated with MRTX849 @ 100mg/kg PO, QD in all models shown. % change from baseline control was calculated on ~ day 22 post initiation of dosing.
MRTX849 Demonstrates Broad Spectrum Tumor Regression in KRASG12C
Nonclinical Tumor Growth Models

CDX and PDX models were treated with MRTX849 @ 100mg/kg PO, QD in all models shown. % change from baseline control was calculated on ~ day 22 post initiation of dosing.
Drug Anchored CRISPR Screen Reveals Drug MOA, Resistance Biomarkers & Combo Targets

~5000 sgRNA Library
- 20 Negative Controls
 - 20 intronic targets
- 10 Positive Control Targets
 - 10 sgRNAs / gene
- 938 Target Genes
 - 5 sgRNAs / gene

In Vivo Log FC

Vehicle D14 / plasmid

Log FC

MRTX849 D14 / plasmid

LU99 In Vivo

“ENRICHMENT” LOF Promotes Growth / Resistance

“DROP OUT” Dependency Genes MRTX849 Combination Targets

MRTX849 3 replicates

in vitro

DMSO

MRTX849

in vivo

5 replicates

Library (Virus)

KRAS^{G12C} +Cas9 cells

x 15

3 replicates

in vitro

5 replicates

Vehicle

MRTX849

Combination Targets and Putative Resistance Biomarkers

EGFR

RTKs

FGFR1

Grb2

SOS1

SHP2

GDP-KRAS^{G12C}

GTP-KRAS^{G12C}

cRAF

ERK

AKT

mTOR

PTEN

RAS GAPs

NF1

PI3K

TP53

KEAP1

PTEN

RAS GAPs

PI3K

CDK4

RB1

S6

S6K1

CCND1

ERK

MYC

RSK

CDK4/6

RB1

E2F

EGFR

FGFR1

Grb2

SOS1

SHP2

GDP-KRAS^{G12C}

GTP-KRAS^{G12C}

cRAF

ERK

AKT

mTOR

PTEN

RAS GAPs

NF1

PI3K

TP53

KEAP1

PTEN

RAS GAPs

PI3K

CDK4

RB1

S6

S6K1

CCND1

ERK

MYC

RSK

CDK4/6

RB1

E2F
Functional Contribution of Top MRTX849 Regulated Pro-survival and Apoptosis Genes Elucidated by CRISPR Screen

- MRTX849 treatment regulates expression of selected pro-survival and pro-apoptotic genes which correlates with tumor growth inhibition in multiple KRASG12C mutant models.
- Functional role for many genes confirmed in CRISPR data
 - Pro-survival genes BIRC5/Survivin, BCL2L1, MCL1: Decreased by MRTX849 & Exhibit Dropout
 - Pro-apoptotic genes BCL2L11: Increased by MRTX849 & Exhibit Enrichment
 - Apoptotic regulators APAF1, CASP3/9 enriched in drug-treated CRISPR data, in particular
- Several tumor suppressors enriched suggesting potential for intrinsic resistance

CRISPR

<table>
<thead>
<tr>
<th>Model</th>
<th>MRTX849</th>
<th>MYC</th>
<th>KRAS</th>
<th>BIRC5</th>
<th>BCL2L1</th>
<th>MCL1</th>
<th>CASP9</th>
<th>BCL2L11</th>
<th>BAX</th>
<th>CASP3</th>
<th>APAF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU99</td>
<td>In Vitro</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H358</td>
<td>In Vitro</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KYSE410</td>
<td>In Vitro</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RNAseq

<table>
<thead>
<tr>
<th>Model</th>
<th>MRTX849</th>
<th>BIRC5</th>
<th>BCL2L1</th>
<th>MCL1</th>
<th>BAD</th>
<th>BIM</th>
<th>CASP7</th>
<th>CASP9</th>
<th>BBC3</th>
<th>BCL2L11</th>
<th>APAF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MiaPaca2</td>
<td>QDx7 6hr</td>
<td></td>
</tr>
<tr>
<td>H1373</td>
<td>QDx7 6hr</td>
<td></td>
</tr>
<tr>
<td>H358</td>
<td>QDx7 6hr</td>
<td></td>
</tr>
<tr>
<td>H2122</td>
<td>QDx7 6hr</td>
<td></td>
</tr>
<tr>
<td>H2030</td>
<td>QDx7 6hr</td>
<td></td>
</tr>
</tbody>
</table>

- **Pro-Survival**
- **Pro-Apoptosis**

Tumor Suppressors

<table>
<thead>
<tr>
<th>Model</th>
<th>MRTX849</th>
<th>CBL</th>
<th>TSC2</th>
<th>RB1</th>
<th>TP53</th>
<th>TSC1</th>
<th>TIP39</th>
<th>PTEN</th>
<th>KEAP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU99</td>
<td>In Vitro</td>
<td>(-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H358</td>
<td>In Vitro</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KYSE410</td>
<td>In Vitro</td>
<td>(+)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

log2 FC

- \(< -2.5\)
- \(0\)
- \(2.5 >\)
Increased KRASG12C Modification Via Upstream Combinations Improves Response

Model
- MRTX849
- PTPN11
- FGFR1
- ERBB2
- EGFR
- FGFR3
- SOS1
- NF1

LU99
- In Vitro (-)
- In Vivo (+)

H358
- In Vitro (-)

KYSE410
- In Vitro (+)

log2 FC
- < -2.5
- 0
- 2.5 >

HERi -- H2122
- KRAS mobility shift
- MRTX849 single agent
- MRTX849 + afatinib (0.2 μmol/L)

SHP2i -- KYSE-410
- Normalized Active RAS

SOS1i -- MiaPaca-2
- Normalized Active RAS

Tumor Volume (mm\(^3\))

- Vehicle
- BI-I-13 50mgkg BID
- MRTX849 10mgkg QD
- Combo
Alternative Pathway Activation Through mTOR May Contribute to Adaptive Resistance

- mTOR pathway genes drop out +/- MRTX849 treatment
- Loss of TSGs PTEN and TSC1/2 provide growth advantage
- mTOR combinations further reduce pS6 activation and leads to increased in vivo efficacy

<table>
<thead>
<tr>
<th>Model</th>
<th>MRTX849</th>
<th>In Vitro</th>
<th>In Vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU99</td>
<td>In Vitro</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>H358</td>
<td>In Vitro</td>
<td>(-)</td>
<td>(+)</td>
</tr>
<tr>
<td>KYSE410</td>
<td>In Vitro</td>
<td>(-)</td>
<td>(+)</td>
</tr>
</tbody>
</table>

“DROP OUT”

Dependency Genes
MRTX849
Combination Targets

“ENRICHMENT”

LOF Promotes Growth / Resistance

- Vehicle
- MRTX849 100 mg/kg
- Vistusertib 15mg/kg
- MRTX849 + Vistusertib

Model: SW1573, KYSE-410, H368, H2122, LU11692

Tumor Volume (mm^3)

Study Day

Log2 FC

-2.5 0 2.5

GDP-KRAS
GTP-KRAS
PI3K
mTOR
S6K1
S6
RAS GAPs
NF1
G12C
RSK
MEK
ERK
cRAF
AKT
PTEN
PTPN11
GRB2
MTOR
STK11
FGFR1
PIK3CA
TSC2
TSC1
PTEN

- Alternative Pathway Activation Through mTOR May Contribute to Adaptive Resistance
Cell Cycle Strongly Implicated in CRISPR Screens and CDK4/6 Inhibitors Augment MRTX849 In Vivo Efficacy

GTP-KRASG12C → MEK → ERK → cRAF → AKT → PI3K → PTEN → GTP-KRASG12C → SOS1 → Grb2 → RTKs

EGFR → FGFR1

SHP2 → GDP-KRASG12C → NF1 → RAS GAPS

SOS1 → SOS1 → SOS1 → SOS1 → SOS1

CDK4/6 → CCND1 → MYC → RSK → S6K1 → S6 → E2F → RB1

Model

<table>
<thead>
<tr>
<th>Model</th>
<th>In Vitro</th>
<th>In Vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU99</td>
<td>(-)</td>
<td>+</td>
</tr>
<tr>
<td>H358</td>
<td>(-)</td>
<td>+</td>
</tr>
<tr>
<td>KYSE410</td>
<td>(-)</td>
<td>+</td>
</tr>
</tbody>
</table>

“DROP OUT” Dependency Genes
MRTX849 Combination Targets

“ENRICHMENT” LOF Promotes Growth / Resistance

H358

LU99

KYSE410

H2030

LU6406

LU11692

Vehicle
MRTX849 100 mg/kg
Palbociclib 130mg/kg
MRTX849 + Palbo
MRTX849 Demonstrates Broad Spectrum Tumor Regression in KRASG12C Nonclinical Tumor Growth Models
Single Agent Activity of MRTX849 in Selected Nonclinical KRASG12C Tumor Models that Exhibit Intrinsic or Adaptive Resistance

CDX and PDX models were treated with MRTX849 @ 100mg/kg PO, QD in all models shown. % change from baseline control was calculated on ~ day 22 post initiation of dosing.
MRTX849 Demonstrates Broad Spectrum Tumor Regression in KRAS^{G12C} Nonclinical Tumor Growth Models

Pan-HERi Combination – Afatinib

SHP2i Combination – RMC-4550

MRTX849 in Combination with HERi or SHP2i Further Inhibit KRAS^{G12C} Resulting in Dramatic Regression in Models Partially Resistant to Single Agent MRTX849
MRTX849 Demonstrates Broad Spectrum Tumor Regression in KRAS\textsubscript{G12C} Nonclinical Tumor Growth Models

- Esophagus
- Lung
- Lung PDX

MRTX849 in Combination with Vistusertib or Palbociclib, Block Downstream Pathway Activation and Induce Dramatic Regression in Models Partially Resistant to Single Agent MRTX849

<table>
<thead>
<tr>
<th>Model</th>
<th>Lung</th>
<th>Lung PDX</th>
<th>Esophagus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1573</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KYSE-410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU2512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU1692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H358</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCC44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mTORi Combination – Vistusertib

CDK4/6i Combination – Palbociclib
KEAP1 KO Modifies Response to KRASG12C Inhibition and May Contribute to Adaptive Resistance

LU99 CRISPR Clones

![Graph showing tumor volume over study days for different groups. The graph includes lines for LU99 sgNT Vehicle, LU99 sgNT MRTX849, LU99 sgKEAP1 3-1 Vehicle, LU99 sgKEAP1 3-5 Vehicle, LU99 sgKEAP1 3-1 MRTX849, LU99 sgKEAP1 3-5 MRTX849, LU99 sgNRF2 Vehicle, and LU99 sgNRF2 MRTX849. The x-axis represents study days (0-30), and the y-axis represents tumor volume (mm3).]
Conclusions

- MRTX849 is broadly active as a single agent across a panel of KRASG12C-mutant xenograft models.
- Executed MRTX849-anchored CRISPR screens targeting ~1,000 genes in 3 KRASG12C cell lines, *in vitro* & *in vivo*.
- Tumor suppressor genes that promoted tumor growth also conferred partial drug resistance including KEAP1, NF1, Rb1, TSC1/2, and PTEN.
- Screened ~70 rational compounds in combination with MRTX849 across 8 lung cell lines *in vitro* that were partially MRTX849-resistant *in vivo*.
- Top combination targets validated with *in vivo* combinations are EGFR family, SHP2, SOS1, mTOR, and CDK4/6.
Acknowledgments

Mirati Therapeutics
Jamie Christensen
Pete Olson
Laura Waters
Ruth Aranda
Jill Hallin
David Briere
Andrew Calinisan
Niranjan Sudhakar
Lauren Hargis
Vickie Bowcut

Monoceros Biosystems
Adam Pavlicek
Sole Gatto
Julio Fernandez-Banet

Collaborators
Channing Der (UNC)
Adrienne Cox (UNC)
Piro Lito (MSK)
Pasi Janne (DFCI)
XenoSTART

Service Providers
Cellecta
Crown Biosciences