SITC 2019
Gaylord National Hotel & Convention Center
Nov. 6-10
NATIONAL HARBOR, MARYLAND

Society for Immunotherapy of Cancer
Sitravatinib + Nivolumab Demonstrates Clinical Activity in Platinum-Experienced Urothelial Carcinoma Patients Who Progressed on Prior Checkpoint Inhibitor

Pavlos Msaouel1, Arlene O. Siefker-Radtke1, Randy F. Sweis2, Amir Mortazavi3, Nicholas J. Vogelzang4, Ulka Vaishampayan5, Thomas P. Bradley6, Manojkumar Bupathi7, Luke T. Nordquist8, David R. Shaffer9, Joel Picus10, Jeffrey T. Yorio11, Shifeng Mao12, Gurjyot K. Doshi13, Daniel L. Spitz14, Sunil Gandhi15, Daniel Chong16, Arash Rezazadeh Kalebasty17, James Christensen18, Peter Olson18, Demiana Faltaos18, Ronald L. Shazer18, Maria Winter18, Delia Alvarez18, Hirak Der-Torossian18, Jonathan E. Rosenberg19

1The University of Texas MD Anderson Cancer Center, Houston, TX; 2The University of Chicago Medicine, Chicago, IL; 3Barbara Ann Karmanos Cancer Institute, Detroit, MI; 4Northwell Health - Monter Cancer Center, Lake Success, NY; 5Rutgers Cancer Institute and Research Network, New Brunswick, NJ; 6Comprehensive Cancer Centers of Nevada, US Oncology Research, Las Vegas, NV; 7Ohio State University Comprehensive Cancer Center, Columbus, OH; 8Comprehensive Cancer Centers of Nevada, US Oncology Research, Las Vegas, NV; 9Northwell Health - Monter Cancer Center, Lake Success, NY; 10University of Nebraska Comprehensive Cancer Center, Omaha, NE; 11New York Oncology Hematology, US Oncology Research, Albany, NY; 12Washington University in St. Louis School of Medicine, St. Louis, MO; 13Texas Oncology-Austin, US Oncology Research, Austin, TX; 14Allegheny General Hospital, Pittsburgh, PA; 15Texas Oncology-Memorial City, US Oncology Research, Houston, TX; 16Florida Cancer Specialists & Research Institute, West Palm Beach, FL; 17Florida Cancer Specialists & Research Institute, St. Petersburg, FL; 18Mirati Therapeutics, Inc., San Diego, CA; 19Memorial Sloan-Kettering Cancer Center, New York, NY
Presenter Disclosure Information

Pavlos Msaouel, MD
The University of Texas
MD Anderson Cancer Center
Houston, TX, USA

The following relationships exist related to this presentation:

Advisory Boards / Honoraria:
Bristol-Myers Squibb, Mirati Therapeutics

Non-branded educational programs:
Exelixis, Pfizer

Clinical Trials with Grant Support:
Bristol-Myers Squibb, Mirati Therapeutics,
Takeda Pharmaceutical Company

There will be discussion about the use of products for non-FDA approved indications in this presentation
Sitravatinib (MGCD516): A Spectrum-Selective Kinase Inhibitor

- Sitravatinib is an orally available small molecule that inhibits a spectrum of related receptor tyrosine kinases (RTKs) including:
 - TAM family (Tyro3, Axl, MerTK)
 - Split family (VEGFR2/PDGFR and c-Kit)
 - c-Met

- Inhibition of these target classes may enhance anti-tumor activity through:
 - Modulation of the immunogenic status of tumors
 - Improvement of tumor perfusion by reducing intratumoral pressure
 - Modulating subsets of immune cells
Sitravatinib in the Tumor Microenvironment (TME)

Tyro, Axl, Mer
- Macrophages shift to Type 1 resulting in production of immune stimulating cytokines
- Enhances innate and adaptive immune response

VEGFR2, KIT + Tyro, Axl, Mer
Increase:
- Dendritic cell dependent antigen presentation
- NK cell response
- T cell trafficking

VEGFR2 & KIT
- Reduction in Tregs and MDSCs
- Enhance CD8+ T-cell response

Immuno-suppressive Pre-Treatment

Immuno-responsive Post-Treatment

References:
- Gatenby et al., Anti-KIT Monoclonal Antibody Treatment Enhances the Antitumor Activity of Immune Checkpoint Inhibitors by Reversing Tumor-Induced Immunosuppression. J Natl Cancer Inst. 2017; 109(4)
- Akatsuka, T., Y. Kushida, and S. Okuhira. TAM receptor-positive tissues as emerging targets of innate immune checkpoint blockade for cancer therapy. Immunol Rev. 2017; 279(1)
Sitravatinib Inhibits Immunosuppressive Immune Populations and Augments Checkpoint Inhibitor Therapy

Inhibition of M2 macrophage polarization by sitra or MERTK KO ex vivo

Sitravatinib decreases M2 MΦs, M-MDSCs and increases CD4 and CD8 cells in a syngeneic model

Sitravatinib augments PD-1 therapy in CPI refractory models

- Sitravatinib shifts macrophage polarization M2 → M1, depletes MDSCs and increases CD8+ T cells in tumor-bearing syngeneic mice
- Sitravatinib augments PD-1 therapy in CPI-refractory models and in mice with complete responses to sitravatinib + PD-1 therapy, tumors do not form upon re-innoculation, confirming an adaptive immunity-based mechanism
Urothelial Carcinoma Background

• Results in approximately 165,000 deaths per year worldwide

• Platinum-based chemotherapy is the cornerstone of first-line therapy
 ▪ Most patients experience treatment resistance or intolerance

• Since 2016, treatment options for platinum-refractory or platinum-ineligible advanced UC have been expanded to include anti-PD-1 and anti-PD-L1 checkpoint inhibitors (CPI)
 ▪ Single agent CPI response rates in UC are relatively low (around 20%)
 ▪ Durable clinical responses in a subset of patients

• Strategies to improve clinical efficacy and overcome acquired or primary resistance to CPI therapy are needed
 ▪ Combine an anti-PD-1 or anti-PD-L1 CPI with an agent that has both immune modulatory and antitumor properties
516-003 Study Design

Open-label, multi-center Phase 2 Study to evaluate sitravatinib + nivolumab in patients with locally-advanced or metastatic UC

<table>
<thead>
<tr>
<th>Cohorts</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Platinum Treated</td>
<td>≥1 PR</td>
<td>n=9</td>
<td>n=8</td>
</tr>
<tr>
<td>2 Platinum Ineligible</td>
<td>n=9</td>
<td>n=8</td>
<td>n=23</td>
</tr>
<tr>
<td>3 Platinum Treated</td>
<td>n=9</td>
<td>n=8</td>
<td>n=23</td>
</tr>
<tr>
<td>4 Platinum Ineligible</td>
<td>n=9</td>
<td>n=8</td>
<td>n=23</td>
</tr>
<tr>
<td>5 Platinum Treated</td>
<td>≥6 PR</td>
<td>n=24</td>
<td>n=21</td>
</tr>
<tr>
<td>6 Platinum Ineligible</td>
<td>n=24</td>
<td>n=21</td>
<td></td>
</tr>
<tr>
<td>7 Platinum Treated</td>
<td>n=9</td>
<td>n=8</td>
<td>n=23</td>
</tr>
<tr>
<td>8 Platinum Ineligible</td>
<td>n=9</td>
<td>n=8</td>
<td>n=23</td>
</tr>
</tbody>
</table>

Previously Treated with PD-(L)1 & another I/O

Previously Treated with PD-(L)1 & an ADC (e.g. enfortumab, sacituzumab)

PD-(L)1 Naïve

≥1 PR

≥3 PR

≥6 PR

Radiographic Progression

n=9

n=8

n=23

n=24

n=21

n=21

n=9

n=8

n=23

n=9

n=8

n=23

n=9

n=8

n=23

n=9

n=8

n=23

预备治疗的PD-(L)1

预备治疗的PD-(L)1和另一个I/O

PD-(L)1 Naïve
Hypothesized that the combination of sitravatinib + nivolumab will restore or enhance CPI clinical activity in pts with immunotherapy-refractory UC
 • Could enhance the antitumor activity observed with either agent alone
 • Sitravatinib + nivolumab has also been shown to be well-tolerated in other indications, including NSCLC and RCC

Cohort 1 patients (data cut-off of 17 October 2019)
 • UC patients who have progressed on or after treatment with a CPI, as the most treatment prior to the study
 • AND were previously treated with platinum-based chemotherapy

Completed enrollment into the expansion phase

Continuous 28-day Cycles
Sitravatinib 120 mg QD orally
+ Nivolumab 240 mg IV Q2W or 480 mg IV Q4W
Tumor Assessments performed Q8W
OBJECTIVES/ENDPOINTS

• PRIMARY
 • Clinical activity by ORR per RECIST Version 1.1

• SECONDARY
 • Safety & tolerability
 • Secondary efficacy endpoints including DOR, CBR, PFS & OS
 • Pharmacokinetics (PK) of sitravatinib
 • PK of sitravatinib in patients with renal impairment

• EXPLORATORY
 • Circulating PD-L1, immune cell populations and cytokines
 • Tumor cell PD-L1 expression, tumor infiltrating immune cell populations & gene expression signatures
 • Tumor gene alterations in circulation & in tumor tissue

KEY ELIGIBILITY CRITERIA

• Histologically-confirmed transitional cell UC that is locally advanced or metastatic & is unresectable
• Most recent treatment must have included anti-PD-1 or anti-PD-L1 CPI with radiographic PD on or after the CPI
 ▪ No prior treatment with other immunotherapies (e.g. anti-CTLA-4, anti-OX40 and anti–CD137)
• Received prior platinum-based chemotherapy
 ▪ If peri-operative setting, must have PD ≤ 1 yr of last dose
• Measurable disease, as per RECIST Version 1.1
• ECOG 0-1
• GFR ≥ 30 mL/min per CKD-EPI
• No active brain metastases, unless adequately treated & neurologically-stable off treatment
516-003 Cohort 1 Patient Disposition

<table>
<thead>
<tr>
<th>Enrolled Population</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Population (received ≥1 dose)</td>
<td>33 (100%)</td>
</tr>
<tr>
<td>Early treatment discontinuations (prior to 1st tumor assessment)</td>
<td>4</td>
</tr>
<tr>
<td>• Unrelated AE</td>
<td>2</td>
</tr>
<tr>
<td>• Global deterioration of health</td>
<td>1</td>
</tr>
<tr>
<td>• Withdrew consent</td>
<td>1</td>
</tr>
<tr>
<td>Too early for 1st tumor assessment (<8 wks on study)</td>
<td>7</td>
</tr>
<tr>
<td>Evaluable Population (≥1 on-study tumor assessment)</td>
<td>22 (67%)</td>
</tr>
</tbody>
</table>
516-003 Cohort 1 Safety Population Characteristics (N=33)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Median (range)</th>
<th>≥75 years, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>68 (47, 83)</td>
<td>8 (24)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>23 (70)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10 (30)</td>
<td></td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>30 (91)</td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>2 (6)</td>
<td></td>
</tr>
<tr>
<td>Other (refused to provide)</td>
<td>1 (3)</td>
<td></td>
</tr>
<tr>
<td>ECOG PS, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>15 (45)</td>
<td></td>
</tr>
<tr>
<td>1+</td>
<td>18 (55)</td>
<td></td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Former smoker</td>
<td>17 (52)</td>
<td></td>
</tr>
<tr>
<td>Never smoker</td>
<td>14 (42)</td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>2 (6)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disease stage at study entry, n (%)</th>
<th>Metastatic</th>
<th>Locally advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 (91)</td>
<td>3 (9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metastasis sites at baseline, n (%)</th>
<th>Visceral disease</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23 (70)</td>
<td>10 (30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liver</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lymph node only</td>
<td>7 (21)</td>
</tr>
<tr>
<td></td>
<td>Lymph node + brain/bone</td>
<td>3 (9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemoglobin at baseline, n (%)</th>
<th><10 g/dL</th>
<th>7 (21)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bellmunt prognostic factors, n (%)</th>
<th>≥2 adverse factors</th>
<th>8 (24)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of prior systemic therapy in advanced/metastatic setting, n (%)</th>
<th>Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 (1, 4)</td>
</tr>
<tr>
<td></td>
<td>1 (3)</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>27 (82)</td>
</tr>
<tr>
<td></td>
<td>2 (6)</td>
</tr>
<tr>
<td></td>
<td>3 (9)</td>
</tr>
</tbody>
</table>

* Patients with 1 prior therapy had a platinum-based chemotherapy and a PD-(L)1 inhibitor in combination
516-003 Preliminary Sitravatinib Pharmacokinetics

• The PK exposure values attained in UC patients Cohort 1 are consistent with the PK levels historically observed.

• In the current study, limited exposure parameters were derived due to the sparse sampling collections (0, 2 and 4hrs on C1D1 and C1D15).

• The 120 mg QD dose resulted in a single dose geometric mean Cmax of 21 ng/mL reached after approximately 3 hrs. At steady state the geometric mean Ctrough and Cmax values were 50 and 72.5 ng/mL, respectively.

• A renal impairment sub-study is ongoing to compare PK in patients with mild or moderate renal impairment to patients with no renal impairment.
516-003 Safety

Most Frequent (>15%) Related Treatment-Emergent Adverse Events (Sitravatinib and/or Nivolumab)

<table>
<thead>
<tr>
<th>Adverse Event (Preferred Term)</th>
<th>Safety Population (N=67, Cohorts 1-6; N=33, Cohort 1 only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cohorts 1-6 All Grades n (%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>36 (54%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>33 (49%)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>22 (33%)</td>
</tr>
<tr>
<td>Dysphonia</td>
<td>20 (30%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>16 (24%)</td>
</tr>
<tr>
<td>Alanine aminotransferase increased</td>
<td>16 (24%)</td>
</tr>
<tr>
<td>Palmar-planter erythrodysesthesia syndrome (PPE)</td>
<td>14 (21%)</td>
</tr>
<tr>
<td>Aspartate aminotransferase increased</td>
<td>12 (18%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>12 (18%)</td>
</tr>
<tr>
<td>Lipase increased</td>
<td>11 (16%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>11 (16%)</td>
</tr>
</tbody>
</table>

No treatment-related Grade 4 or Grade 5 AEs were reported
516-003 Cohort 1: Efficacy

BEST RESPONSE (Evaluable Patients, N=22)

21/22 (95%) CR+PR+SD
19/22 (86%) CR+PR+SD>12wks
8/22 (36%) Tumor Regression >30%
6/22 (27%) Confirmed Response (CR+PR)

Abbreviations: At=atezolizumab; Du=durvalumab; Ni=nivolumab; Pe=pembrolizumab

PD-(L)1-Refractory Platinum-Experienced
Cohort 1: Case Study #1

- 10/2017: metastatic UC of bladder
- 10/2017: neoadjuvant ddMVAC x 4 cycles
- 2/2018: cystectomy

- 1/2019: disease progression
 → 2/2019: nivolumab + sitravatinib

1/11/2019 (Baseline)

9/15/2019 (Wk16): confirmatory PR scan (-50%)
Cohort 1: Case Study #2

- 5/2018: metastatic UC of urethra/prostatic duct
- 7/2018: carboplatin/gemcitabine x 6 cycles
- 1/2019: progression in bone and LNs
 → 11/2018: pembrolizumab

- 5/2019: progression in bone, LNs and innumerable new liver metastases
 → 5/2019: nivolumab + sitravatinib

5/2/2019 (Baseline)

9/17/2019 (Wk16): confirmatory PR scan (-50%) – remains in PR (-54%)
516-003 Cohort 1 Conclusion

• The combination of sitravatinib with nivolumab is a rational approach to restoring or enhancing the clinical activity of anti-PD-(L)1 CPI in patients with immunotherapy resistant UC

• The combination has an acceptable toxicity profile with manageable AEs

• This ongoing study continues to show promising clinical activity, including tumor regression & prolonged duration on treatment in patients who have progressed following prior CPI

• The study is open at 25 sites in the US & recruitment is ongoing in 7 Cohorts

• Preliminary clinical activity has been seen in several other cohorts, with decisions regarding expansion awaiting for additional enrollment & maturing data
Acknowledgements

• Thank you to all the patients and their families
• Participating study investigators and clinical sites
• This study is sponsored by Mirati Therapeutics, Inc.