Targeting the genetic and immunological drivers of cancer

A phase 1 clinical trial evaluating the pharmacokinetics (PK), safety, and clinical activity of MRTX849, a mutant-selective small molecule KRAS G12C inhibitor, in advanced solid tumors

Presented at AACR-NCI-EORTC International Conference on Molecular Targets
October 28, 2019

Pasi A. Jänne, MD, PhD, Kyri Papadopoulos, MD, Ignatius Ou MD, Igor Rybkin MD, Melissa Johnson MD
MRTX849 Demonstrates Near Complete Target Inhibition and Broad Spectrum Antitumor Activity In Nonclinical Models

Modification of KRAS^{G12C} Protein and Inhibition of pERK

- MRTX849 demonstrates near-complete modification of KRAS^{G12C} protein and inhibition of pERK – and is well tolerated – at 100 mg/kg
- Protein binding-corrected plasma exposure in human exceeds levels in mouse at 100 mg/kg
- Response rate in nonclinical CDX and PDX models is 65% in all models and 75% in NSCLC models

Antitumor Activity of MRTX849 in Cancer Models

Concomitant mutations in TP53, KEAP1, or STK11 do not predict MRTX849 therapeutic response
Study Population
• Solid tumor with KRAS (p.G12C) mutation based on Sponsor-approved test
• Unresectable or metastatic disease
• No available treatment with curative intent
• No active brain metastases

Study Endpoints
• Safety
• PK/PD
• Clinical Activity

Expansion Criteria
• Dose expansion decisions prior to MTD will be based on PK, PD, and safety

Doses Evaluated (as of 11-Oct-2019)

- 150 mg (QD) N=1
- 300 mg (QD) N=2
- 600 mg (QD) N=1
- 600 mg (BID) N=1
- 1200 mg QD N=1
- 600 mg BID N=1
- Further dose escalation to MTD may continue

ClinicalTrials.gov Identifier: NCT03785249
Patient Disposition

Enrolled Patients
(received ≥ 1 dose MRTX849)

- N=17
- 10 NSCLC, 4 CRC, 2 Appendiceal, 1 Duodenal

Evaluable Patients
(received ≥ 1 scan)

- N=12
- 6 NSCLC, 4 CRC, 2 Appendiceal

Non-Evaluable Patients

- Yet to have 1st scan
 - N=3
- Off treatment prior to 1st scan
 - N=2*

* 1 patient withdrew consent prior to 1st scan (1200 mg QD);
 1 patient discontinued treatment due to an unrelated AE prior to 1st scan (600 mg QD)

Data cut-off date: 11-Oct-2019
Patient Demographics and Baseline Characteristics

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>N=17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – median (range), years</td>
<td>60 (44-76)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White, n (%)</td>
<td>15 (88)</td>
</tr>
<tr>
<td>Black, n (%)</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Asian, n (%)</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>9 (53)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>8 (47)</td>
</tr>
<tr>
<td>ECOG Performance Status</td>
<td></td>
</tr>
<tr>
<td>0, n (%)</td>
<td>10 (59)</td>
</tr>
<tr>
<td>1, n (%)</td>
<td>7 (41)</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Non-Small Cell Lung Cancer, n (%)</td>
<td>10 (59)</td>
</tr>
<tr>
<td>Colorectal Cancer, n (%)</td>
<td>4 (24)</td>
</tr>
<tr>
<td>Other Tumor Type, n (%)</td>
<td>3 (18)</td>
</tr>
</tbody>
</table>

Data cut-off date: 11-Oct-2019
Patient Population

<table>
<thead>
<tr>
<th></th>
<th>All Patients N=17</th>
<th>NSCLC N=10</th>
<th>CRC N=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime Never Smoker</td>
<td>5 (29)</td>
<td>0</td>
<td>3 (75)</td>
</tr>
<tr>
<td>Former Smoker</td>
<td>12 (71)</td>
<td>10 (100)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>16 (94)</td>
<td>10 (100)</td>
<td>3 (75)</td>
</tr>
<tr>
<td>No. Prior Regimens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, n (%)</td>
<td>4 (24)</td>
<td>2 (20)</td>
<td>0</td>
</tr>
<tr>
<td>2, n (%)</td>
<td>1 (6)</td>
<td>1 (10)</td>
<td>0</td>
</tr>
<tr>
<td>≥3, n (%)</td>
<td>12 (71)</td>
<td>7 (70)</td>
<td>4 (100)</td>
</tr>
<tr>
<td>Median (Range)</td>
<td>3 (1-9)</td>
<td>3 (1-9)</td>
<td>4 (3-5)</td>
</tr>
<tr>
<td>Type of Prior Regimens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checkpoint Inhibitor¹, n (%)</td>
<td>10 (59)</td>
<td>9 (90)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Cisplatin or Carboplatin, n (%)</td>
<td>10 (59)</td>
<td>10 (100)</td>
<td>0</td>
</tr>
<tr>
<td>Oxaliplatin, n (%)</td>
<td>5 (29)</td>
<td>0</td>
<td>4 (100)</td>
</tr>
<tr>
<td>Irinotecan, n (%)</td>
<td>6 (35)</td>
<td>1 (10)</td>
<td>4 (100)</td>
</tr>
</tbody>
</table>

¹Includes pembrolizumab, nivolumab, atezolizumab regimens

Data cut-off date: 11-Oct-2019
Mean MRTX849 Plasma Concentrations Following Single and Multiple Oral Dose Administration QD and BID

The cave achieved at 600 mg BID at steady-state is:

- 2-fold above concentration associated with maximal efficacy in resistant models (1450 ng/ml)
- 5-fold above concentration associated with maximal efficacy in sensitive models (600 ng/ml)

600 mg BID GeoMean (CV%)

<table>
<thead>
<tr>
<th>Period</th>
<th>C<sub>max</sub> (ng/mL)</th>
<th>AUC<sub>0-24</sub> (ug*h/mL)</th>
<th>C<sub>ave</sub> (ng/mL)</th>
<th>t<sub>½</sub> (h)</th>
<th>t<sub>½_eff</sub> (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1 (N=12)</td>
<td>513 (101.0)</td>
<td>12.1 (69.5)<sup>a</sup></td>
<td>318 (79.8)</td>
<td>24.7<sup>b</sup></td>
<td>-</td>
</tr>
<tr>
<td>Steady State (N=10)</td>
<td>3180 (50.4)</td>
<td>69.8 (58.6)<sup>a</sup></td>
<td>2880 (51.4)</td>
<td>-</td>
<td>63.2 (76.6)</td>
</tr>
</tbody>
</table>

Median (Min-Max); *N=9; *N=1 (Only 1 patient contributed to the lead-in 96 hours post-dose sampling); Data Source: Interim Pharmacokinetic Data (14 October 2019)
Patient Incidence of Treatment Related AEs (>10%)
The MTD has not yet been established

<table>
<thead>
<tr>
<th>Treatment-Related AEs (N=17)</th>
<th>Grade 1 n</th>
<th>Grade 2 n</th>
<th>Grade 3 n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Nausea</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>AST Increased</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ALT Increased</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Creatinine Increased</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal Distension</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alkaline Phosphatase Increased</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment-Related AEs (N=17)</th>
<th>Grade 1 n</th>
<th>Grade 2 n</th>
<th>Grade 3 n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Decreased Appetite</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dehydration</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Dry Mouth</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>QT Prolonged</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rash</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dose limiting toxicities observed: 1200 QD capsule burden intolerable (12 capsules), limited dose exposure <80%; 600 mg BID grade 3/4 amylase/lipase increase, isolated enzyme elevation without pancreatitis (only treatment related Grade 4 AE observed)

Data cut-off date: 11-Oct-2019
All Evaluable Patients: Best Tumor Response* (N = 12)

-70% -60% -50% -40% -30% -20% -10% 0% 10% 20% 30%

Maximum % Change from Baseline

Dose: 150 mg (QD) 300 mg (QD) 600 mg (QD) 600 mg (BID)

CRC
- SD 5%

NSCLC
- SD 1%
- PR 1%
- SD 0%
- SD 0%
- SD -1%
- SD -2%
- SD -7%
- SD -14%
- SD -21%
- SD -36%
- SD -43%
- SD -47%
- SD -62%
- SD -70%

Evaluable Patients at All Doses

<table>
<thead>
<tr>
<th>Disease</th>
<th>ORR</th>
<th>DCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC</td>
<td>3/6</td>
<td>6/6</td>
</tr>
<tr>
<td>CRC</td>
<td>1/4</td>
<td>3/4</td>
</tr>
<tr>
<td>Append</td>
<td>0/2</td>
<td>2/2</td>
</tr>
</tbody>
</table>

- DCR: Disease Control Rate (SD+PR at 6 weeks)

* Based on local radiographic scans every 6 weeks using RECIST 1.1 criteria
† Confirmed response (1st scan: -37%, 2nd scan: -47%); ‡ Response yet to be confirmed (on study but only 1 scan)
§ Patient had confirmed PR post data cut-off (1st scan: -33%, 2nd scan: -43%)
○ Patient on study (off study patients: 1 progressive disease, 1 global deterioration of health, 1 patient withdrawal of consent)

Data cut-off date: 11-Oct-2019
600 mg BID Dose Patients: Best Tumor Response* (N = 9)

- Based on local radiographic scans every 6 weeks using RECIST 1.1 criteria
- Confirmed response (1st scan: -37%, 2nd scan: -47%); † Response yet to be confirmed (on study but only 1 scan);
- § Patient had confirmed PR post data cut-off (1st scan: -33%, 2nd scan: -43%)
- ○ Patient on study (off study patient: 1 patient withdrawal of consent)

Data cut-off date: 11-Oct-2019
Case Study #1: NSCLC

Demographics
61 year old female with metastatic NSCLC, former smoker

Molecular Characteristics
• KRAS G12C mutation (c.34G>T), High mutant allele freq
• High TMB: 16.7 mut/megabase, no additional notable mutations

Treatment History
• Cisplatin/pemetrexed with concurrent chemoradiation
• RLL wedge resection and LLL lobectomy
• 8 chemotherapy regimens for recurrent disease, including carboplatin/pemetrexed, selumetinib, carboplatin/gemcitabine, gemcitabine monotherapy, pembrolizumab, vinorelbine, irinotecan, and paclitaxel, all without an objective response.

Best Response
PR: 62% reduction at first scan. The patient remains on study.
Prominent neck mass noted smaller by week 1 and no longer detectable by week 2. Notable increase in energy and activity during continued treatment.
Case Study #2: NSCLC

Demographics
45 year old female with metastatic lung adenocarcinoma, former smoker

Molecular Characteristics
• KRAS G12C mutation (c.34G>T)
• KEAP1 (K97M)
• STK11 (E223*)

Treatment History
• Carboplatin/pemetrexed/pembrolizumab
• Docetaxel
• Investigational treatment with binimetinib plus palbociclib
• Best response on prior regimens is SD

Best Response
PR: 33% reduction at first scan. A 43% reduction was observed at the second scan, after the data cut-off. The patient remains on study.

Marked clinical improvement within 2 weeks, including complete resolution of baseline cough and oxygen dependency.

§ This patient had confirmed PR post data cut-off (1st scan: -33%, 2nd scan: -43%)
Case Study #3: CRC

Demographics

47 year old KRAS (p.G12C) female with adenocarcinoma of the left colon with extensive metastases involving the liver, peritoneum, ovaries and lymph nodes, never smokers

Treatment History

• FOLFOX/bevacizumab, partial response
• Capecitabine monotherapy, no response
• FOLFIRI/bevacizumab, no response
• Investigational antibody drug conjugate, no response

Best Response

PR: 37% reduction at first scan, confirmed PR with 47% reduction at second scan. The patient remains on study.

Marked clinical improvement within 3 weeks and a visible decrease in size of her umbilical Sister Mary Joseph’s nodule
Duration of Treatment by Tumor Types and Responses (N=12)

CRC Appendiceal Tumor Type:
- NSCLC (N=6): 6.7 – 38.6 weeks
- CRC (N=4): 9.9 – 30.1 weeks
- Appendiceal (N=2): 10.7 – 20.7 weeks

Data cut-off date: 11-Oct-2019

Dose:
- a. 150 mg QD
- b. 300 mg QD
- c. 600 mg QD
All other patients received 600 mg BID
Conclusions

• MRTX849 is rationally designed, potent, mutant-selective inhibitor of KRASG12C that irreversibly binds to and locks KRASG12C in its inactive, GDP-bound state

• MRTX849 is orally bioavailable and demonstrates linear pharmacokinetics with extensive tissue distribution and a half-life of approximately 25 hours after a single dose (effective $t_{1/2}$ at SS is 63 h)

• MRTX849 is associated with a favorable safety profile and clinical expansion is being pursued at 600 mg BID
 • Expansion cohorts for NSCLC, CRC, and multi-tumor basket underway

• MRTX849 has demonstrated significant clinical activity in heavily pretreated patients, with objective responses observed in patients without responses to prior treatment regimens

• Clinical activity supports the role for inhibition of mutant KRAS in cancer treatment
With Thanks to Patients, Caregivers, Research Staff, and Investigators

Investigators
Kyri Papadopoulos, START, San Antonio, TX
Ignatius Ou, UCI, Irvine, CA
Pasi Jänne, DFCI, Boston, MA
Igor Rybkin, HFCI, Detroit, MI
Melissa Johnson, SCRI, Nashville, TN