Join Mirati's Talent Community and stay connected on future opportunities at Mirati!
- Ledford, Heidi. “Cancer: The Ras renaissance.” Nature 520.7547 (2015): 278-280.
- Matikas, Alexios et al. “Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity.” Crit Rev Oncol Hematol 110 (2017): 1-12.
- Ostrem, Jonathan M., Shokat, Kevan M. “Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design.” Nat Rev Drug Discov 15.11 (2016): 771-785.
- Bos, Johannes L. “ras oncogenes in human cancer: a review.” Cancer Res 49.17 (1989): 4682-4689
- Simanshu, Dhirendra K. et al. “RAS proteins and their regulators in human disease.” Cell 170.1 (2017): 17-33.
- Beganoyic S. CLINICAL SIGNIFICANCE OF THE KRAS MUTATION. Bosn J Basic Med Sci. 2009;9(Suppl 1):S17-S20.
- Mirati estimates based on epidemiology data reported in Globocan 2022 (accessed 2019) and frequencies by mutation; Europe includes EU, Russia and 10 additional European countries; RET estimate does not include thyroid cancer. Rounded to the nearest 1,000.
- Zehir A et al, Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23(6):703-713”
- Campbell et al, Nature Genetics 2016 “Distinct patterns of somatic genome alterations in lung adenocarcinomas”
- Bailey P et al, Nature 2016 “Genomic analyses identify molecular subtypes of pancreatic cancer”
- Hallin J. The KRASG12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discovery, 2019.
- Mirati Therapeutics. Data on File.
- Percent et al. Phase III trial of sitravatinib plus nivolumab vs. docetaxel for treatment of NSCLC after platinum-based chemotherapy and immunotherapy (SAPPHIRE). Journal of Clinical Oncology 2020 38:15_suppl, TPS9635-TPS9635.
- Pircher et al., Synergies of Targeting Tumor Angiogenesis and Immune Checkpoints. Int J Mol Sci, 2017. 18(11).
- Akalu, Y.T., C.V. Rothlin, and S. Ghosh, TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy. Immunol Rev, 2017. 276(1): p. 165-177.
- Kwilas, A.R., R.N. Donahue, K.Y. Tsang, and J.W. Hodge, Immune consequences of tyrosinekinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron, 2015.
- Kryukov GV, Wilson FH, Ruth JR, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science. 2016;351(6278):1214-1218. doi:10.1126/science.aad5214
- Marjon K, Cameron MJ, Quang P, et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 2016;15(3):574-587. doi:10.1016/j.celrep.2016.03.043
- Mavrakis KJ, McDonald ER 3rd, Schlabach MR, et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science. 2016;351(6278):1208-1213. doi:10.1126/science.aad5944
- Han G, Yang G, Hao D, et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat Commun. 2021 Sep 23;12(1):5606. doi: 10.1038/s41467-021-25894-9.
- Smith C.R., Aranda R, Bobinski T.P., Briere D.M., Burns A.C., et al. Fragment-Based Discovery of MRTX1719, a Synthetic Lethal Inhibitor of the PRMT5•MTA Complex for the Treatment of MTAP-Deleted Cancers. J Med Chem. 2022 Jan 18. doi: 10.1021/acs.jmedchem.1c01900. Online ahead of print.