Immune surveillance has led to major treatment breakthroughs for a number of cancers including colorectal cell lung cancer (NSCLC). Although initial response in immune cells and treatment with HDAC inhibitors, a lack of cell therapy is limited in its rapidity and capacity.

In the mechanism of action of the immune system, several distinct steps are involved in the generation of effector and memory lymphocytes. This process includes the presentation of antigens by major histocompatibility complex (MHC) molecules, the recognition of these antigens by T cells, and the activation of effector and regulatory T cells. These cells then go on to eliminate cancer cells by producing cytotoxic T lymphocytes (CTLs) or regulatory T cells (Tregs).

Furthermore, the generation of effector and memory T cells is influenced by several factors, including the presence of cytokines, the activity of the immune system, and the duration of the immune response. These factors can affect the development and function of effector and memory T cells, which can have a significant impact on the outcomes of cancer treatment.

In addition, the expression of MHC class I and II molecules, as well as the activation of T cells, can be modulated by HDAC inhibitors. This modulation can affect the immune response and the generation of effector and memory T cells.

The role of HDAC inhibitors in cancer therapy is further supported by the observation that they can selectively induce the expression of MHC class I and II molecules, which can enhance the immune response.

In summary, the combination of anti-PD-L1 and HDAC inhibitors is a promising approach for the treatment of NSCLC.

References: